DOI QR코드

DOI QR Code

Monitoring Cathodic Shielding and Corrosion under Disbonded Coatings

  • Varela, F. (Institute for Frontier Materials, Deakin University) ;
  • Tan, M. YJ (Institute for Frontier Materials, Deakin University) ;
  • Hinton, B. (Institute for Frontier Materials, Deakin University) ;
  • Forsyth, M. (Institute for Frontier Materials, Deakin University)
  • Received : 2017.06.03
  • Accepted : 2017.06.13
  • Published : 2017.06.30

Abstract

Monitoring of corrosion is in most cases based on simulation of environmental conditions on a large and complex structure such as a buried pipeline using a small probe, and the measurement of thermodynamics and kinetics of corrosion processes occurring on the probe surface. This paper presents a hybrid corrosion monitoring probe designed for simulating deteriorating conditions wrought by disbonded coatings and for measuring current densities and distribution of such densities on a simulated pipeline surface. The concept of the probe was experimentally evaluated using immersion tests under cathodic protection (CP) in high resistivity aqueous solution. Underneath the disbonded area, anodic currents and cathodic currents were carefully measured. Anodic current densities were used to calculate metal loss according to Faraday's law. Calculated corrosion patterns were compared with corrosion damage observed at the surface of the probe after a series of stringent tests. The capability of the probe to measure anodic current densities under CP, without requiring interruption, was demonstrated in high resistivity aqueous solution. The pattern of calculated metal loss correlated well with corrosion products distribution observed at the array surface. Working principles of the probe are explained in terms of electrochemistry.

Keywords

References

  1. J. Jankowski, Corros. Rev., 20, 159 (2002).
  2. J. Jankowski, Corros. Rev., 20, 179 (2002).
  3. V. Facundo, T. Y. Jun, and F. Maria, Proc. 53th Annual Conference of the Australasian Corrosion Association, Hinton Bruce and Bonar Craig, Brisbane, Australia (2013).
  4. S. A. Shipilov and Le May I, Eng. Fail. Anal., 13, 1159 (2006). https://doi.org/10.1016/j.engfailanal.2005.07.008
  5. S. S. Abedi, Eng. Fail. Anal., 14, 250 (2007). https://doi.org/10.1016/j.engfailanal.2005.07.024
  6. F. Hasan, J. Iqbal, and F. Ahmed, Eng. Fail. Anal., 14, 801 (2007). https://doi.org/10.1016/j.engfailanal.2006.11.002
  7. C. Manfredi and J. L. Otegui, Eng. Fail. Anal., 9, 495 (2002). https://doi.org/10.1016/S1350-6307(01)00032-2
  8. M. Yan, J. Wang, E. Han, and W. Ke, Corros. Sci., 50, 1331 (2008). https://doi.org/10.1016/j.corsci.2008.01.004
  9. F. M. Song and N. Sridhar, Corros. Sci., 50, 70 (2008). https://doi.org/10.1016/j.corsci.2007.05.024
  10. D. T. Chin and G. M. Sabde, Corrosion, 56, 783 (2000). https://doi.org/10.5006/1.3280581
  11. J. Xu, C. Sun, M. Yan, and F. Wang, Mater. Chem. Phys., 142, 692 (2013). https://doi.org/10.1016/j.matchemphys.2013.08.024
  12. X. Chen, X. G. Li, C. W. Du, and Y. F. Cheng, Corros. Sci., 51, 2242 (2009). https://doi.org/10.1016/j.corsci.2009.05.027
  13. A. Eslami, B. Fang, R. Kania, B. Worthingham, J. Been, R. Eadie, and W. Chen, Corros. Sci., 52, 3750 (2010). https://doi.org/10.1016/j.corsci.2010.07.025
  14. A. Eslami, R. Kania, B. Worthingham, G. V. Boven, R. Eadie, and W. Chen, Corros. Sci., 53, 2318 (2011). https://doi.org/10.1016/j.corsci.2011.03.017
  15. J. J. Perdomo and I. Song, Corros. Sci., 42, 1389 (2000). https://doi.org/10.1016/S0010-938X(99)00136-5
  16. J. J. Perdomo, M. E. Chabica, and I. Song, Corros. Sci., 43, 515 (2001). https://doi.org/10.1016/S0010-938X(00)00103-7
  17. F. M. Song, Corros. Sci., 55, 107 (2012). https://doi.org/10.1016/j.corsci.2011.10.013
  18. D. T. Chin and G. M. Sabde, Corrosion, 55, 229 (1999). https://doi.org/10.5006/1.3283983
  19. F. M. Song, Corrosion, 66, 035005 (2010). https://doi.org/10.5006/1.3360911
  20. Z. Li, F. Gan, and X. Mao, Corros. Sci., 44, 689 (2002). https://doi.org/10.1016/S0010-938X(01)00042-7
  21. A. Eslami, R. Kania, B. Worthingham, G. V. Boven, R. Eadie, and W. Chen Corrosion, 69, 1103 (2013). https://doi.org/10.5006/0819
  22. T. R. Jack, G. V. Boven, M. Wilmott, R. L. Sutherby, and R. G. Worthingham, Mater. Performance, 33, 17 (1994).
  23. Y. J. Tan, Prog. Org. Coat., 19, 89 (1991). https://doi.org/10.1016/0033-0655(91)80013-9
  24. Y. J. Tan and S. T. Yu, Prog. Org. Coat., 19, 257 (1991). https://doi.org/10.1016/0033-0655(91)80028-H
  25. ASTM-D1193, Standard Specification for Reagent Water, ASTM International, West Conshohocken, PA (2011).
  26. R. Brousseau and S. Qian, Corrosion, 50, 907 (1994). https://doi.org/10.5006/1.3293481
  27. W. Wang, Q. Wang, C. Wang, and J. Yi, J. Loss Prevent. Proc., 29, 163 (2014). https://doi.org/10.1016/j.jlp.2014.02.007