DOI QR코드

DOI QR Code

Hydrogen Evolution Ability of Selected Pure Metals and Galvanic Corrosion Behavior between the Metals and Magnesium

  • Luo, Zhen (Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University) ;
  • Song, Kaili (Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University) ;
  • Li, Guijuan (Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University) ;
  • Yang, Lei (Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University)
  • Received : 2020.05.04
  • Accepted : 2020.08.04
  • Published : 2020.11.30

Abstract

The cathodic hydrogen evolution ability of different pure metals and their long term galvanic corrosion behavior with pure Mg were investigated. The hydrogen evolution ability of pure Ti, Al, Sn and Zr is weak, while that of Fe, W, Cr, and Co is very strong. Initial polarization test could not completely reveal the cathodic behavior of the tested metals during long term corrosion. The cathodic hydrogen evolution ability may vary significantly in the long term galvanic tests for different metals, especially for Al whose cathodic current density reduced to 1/50 of the initial value. The anodic polarization shows that Al and Sn as alloying elements are supposed to provide relatively good passive effect for Mg alloy, while Ag can provide a slight passive effect and Zn has little passive effect.

Keywords

References

  1. T.B. Abbott, Corros., 2015, 71(2), 120-127. https://doi.org/10.5006/1474
  2. V. Bazhenov, A. Koltygin, A. Komissarov, A. Li, V. Bautin, R. Khasenova, A. Anishchenko, A. Seferyan, J. Komissarova and Y. Estrin, J. Magnesium Alloys, 2020, 8, 352-363. https://doi.org/10.1016/j.jma.2020.02.009
  3. F. Guo, L. Jiang, Y. Ma, L. Liu, Z. Zhang, M. Yang, D. Zhang and F. Pan, Scr. Mater., 2020, 179, 16-19. https://doi.org/10.1016/j.scriptamat.2020.01.001
  4. J.J. Han, P. Wan, Y. Ge, X.M. Fan, L.L. Tan, J.J. Li and K. Yang, Mater. Sci. Eng., C, 2016, 58, 799-811. https://doi.org/10.1016/j.msec.2015.09.057
  5. K. Hong, H. Park, Y. Kim, M. Knapek, P. Minarik, K. Mathis, A. Yamamoto and H. Choe, J. Mech. Behav. Biomed. Mater., 2019, 98, 213-224. https://doi.org/10.1016/j.jmbbm.2019.06.022
  6. S.S. Jamali, S. E. Moulton, D. E. Tallman, M. Forsyth, J. Weber and G.G. Wallace, Electrochim. Acta, 2015, 152, 294-301. https://doi.org/10.1016/j.electacta.2014.11.012
  7. S. Nezamdoust, D. Seifzadeh and Z. Rajabalizadeh, J. Magnesium Alloys, 2019, 7(3), 419-432. https://doi.org/10.1016/j.jma.2019.03.004
  8. Y. Uematsu, K. Tokaji and M. Matsumoto, Mater. Sci. Eng., A, 2009, 517(1-2), 138-145. https://doi.org/10.1016/j.msea.2009.03.066
  9. X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, L. Qin and K. Yang, Mater. Sci. Eng., C, 2018, 93, 565-581. https://doi.org/10.1016/j.msec.2018.08.013
  10. C.H. Ye, T.F. Xi, Y.F. Zheng, S.Q. Wang and Y.D. Li, Trans. Nonferrous Met. Soc. China, 2013, 23(4), 996-1001. https://doi.org/10.1016/S1003-6326(13)62558-3
  11. S.H. Tamboli, V. Puri and R.K. Puri, Appl. Surf. Sci., 2010, 256(14), 4582-4585. https://doi.org/10.1016/j.apsusc.2010.02.052
  12. S.F. Zhang, G.H. Hu, R.F. Zhang, Z.X. Jia, L.J. Wang, Y.J. Wang, C.Y. Hu and X.M. He, Trans. Nonferrous Met. Soc. China, 2010, 20, s660-s664. https://doi.org/10.1016/S1003-6326(10)60557-2
  13. L.J. Liu and M. Schlesinger, Corros. Sci., 2009, 51(8), 1733-1737. https://doi.org/10.1016/j.corsci.2009.04.025
  14. I.B. Singh, M. Singh and S. Das, J. Magnesium Alloys, 2015, 3(2), 142-148. https://doi.org/10.1016/j.jma.2015.02.004
  15. K. Xiao, C.F. Dong, D. Wei, J.S. Wu and X.G. Li, J. Wuhan University, Technology-Mater. Sci. Ed., 2016, 31(1), 204-210. https://doi.org/10.1007/s11595-016-1353-4
  16. M. Esmaily, J.R. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas and L. Johansson, Prog. Mater Sci., 2017, 89, 92-193. https://doi.org/10.1016/j.pmatsci.2017.04.011
  17. G.L. Song and A. Atrens, Adv. Eng. Mater., 2003, 5(12), 837-858. https://doi.org/10.1002/adem.200310405
  18. M. Colombo, E. Gariboldi and A. Morri, Mater. Sci. Eng., A, 2018, 713, 151-160. https://doi.org/10.1016/j.msea.2017.12.068
  19. J.B. Go, J.H. Lee, H. Yu and S.H. Park, J. Alloys Compd., 2020, 82, 1534451.
  20. X.Y. Wang, Y.F. Wang, C. Wang, S. Xu, J. Rong, Z.Z. Yang, J.G. Wang and H.Y. Wang, J. Mater. Sci. Technol., 2020, 49, 117-125. https://doi.org/10.1016/j.jmst.2019.04.048
  21. T.W. Cain, C.F. Glover and J.R. Scully, Electrochim. Acta, 2019, 297, 564-575. https://doi.org/10.1016/j.electacta.2018.11.118
  22. S.J. Kim, S.J. Lee, J.Y. Jeong and K.H. Kim, Trans. Nonferrous Met. Soc. China, 2012, 22, s881-s886.
  23. D. Tie, F. Feyerabend, N. Hort, D. Hoeche, K.U. Kainer, R. Willumeit and W.D. Mueller, Mater. Corros., 2014, 65(6), 569-576. https://doi.org/10.1002/maco.201206903
  24. X.B. Zhang, Z.X. Ba, Z.Z. Wang, X.C. He, C. Shen and Q. Wang, Mater. Lett., 2013, 100, 188-191. https://doi.org/10.1016/j.matlet.2013.03.061
  25. N.C. Hosking, M.A. Strom, P.H. Shipway and C.D. Rudd, Corros. Sci., 2007, 49(9), 3669-3695. https://doi.org/10.1016/j.corsci.2007.03.032
  26. H.M. Jia, X.H. Feng and Y.S. Yang, Corros. Sci., 2017, 120, 75-81. https://doi.org/10.1016/j.corsci.2017.02.023
  27. I.Y. Mukhina, Met. Sci. Heat Treat., 2014, 56(5-6), 387-393. https://doi.org/10.1007/s11041-014-9767-0
  28. C.D. Yim, S.K. Woo, J. Yang and B.S. You, Magnesium Technol., 2014, 331-334.
  29. L.G. Bland, L.C. Scully and J.R. Scully, Corros., 2017, 73(5), 526-543. https://doi.org/10.5006/2308
  30. L. Yang, G.K. Liu, L.G. Ma, E.L. Zhang, X.R. Zhou and G. Thompson, Corros. Sci., 2018, 139, 421-429. https://doi.org/10.1016/j.corsci.2018.04.024
  31. L. Yang, X.R. Zhou, M. Curioni, S. Pawar, H. Liu, Z.Y. Fan, G. Scamans and G. Thompson, J. Electrochem. Soc., 2015, 162(7) , C362. https://doi.org/10.1149/2.1041507jes
  32. L. Yang, X.R. Zhou, S.M. Liang, R. Schmid-Fetzer, Z.Y. Fan, G. Scamans, J. Robson and G. Thompson, J. Alloys Compd., 2015, 619, 396-400. https://doi.org/10.1016/j.jallcom.2014.09.040
  33. Y.Q. He, C.Q. Peng, Y. Feng, R.C. Wang and J.F. Zhong, J. Alloys Compd., 2020, 834, 154344-154356. https://doi.org/10.1016/j.jallcom.2020.154344

Cited by

  1. Controlled syngas production by electrocatalytic CO2 reduction on formulated Au25(SR)18 and PtAu24(SR)18 nanoclusters vol.155, pp.1, 2020, https://doi.org/10.1063/5.0057470