Derivation of the Cathodic Current Density around the HLW Canister Due to the Radiolysis of Groundwater

고준위 폐기물 처분용기 주변에서의 지하수의 방사분해에 의한 음 전류 밀도 유도

  • Published : 2006.06.30

Abstract

The oxidizing species are generated from the radiolysis of groundwater in the pore of buffer material around the canister used for the disposal of spent fuels. A mathematical model was introduced to calculate the cathodic current density induced by the oxidant around the canister, which determined the corrosion of carbon steel. An analytical solution was derived to get the cathodic current density in the cylindrical coordinate. The cathodic current densities from both the rectangular coordinate and cylindrical coordinate were compared with each other. The source terms and absorbed dose rate for the calculation of the radiolysis were calculated using the ORIGEN2 and MCNP computer code, respectively. The radius of the canister was determined with the new model in order to prevent the local corrosion. The results showed that the new solution made the cathodic current density around 25 % lower than the Marsh model.

사용후핵연료의 처분을 위해 사용되는 캐니스터 주변 완충재의 공극 내 지하수는 방사분해에 의해 산화제를 발생한다. 캐니스터 주변의 탄소강의 부식을 결정하는 산화제에 의해 야기된 음 전류 밀도를 계산하기 위하여 수학적 모델을 이용하였다. 실린더 좌표계에서 음 전류 밀도를 구할 수 있는 해석해를 유도하였다. 직교 좌표계와 실린더 좌표계에서 구한 음 전류 밀도를 서로 비교하였다. 방사분해 계산을 위한 선원항 및 흡수선량률은 ORIGEN2와 MCNP 컴퓨터 코드를 이용하여 계산하였다. 새로운 모델을 이용하여 부식을 억제할 수 있는 처분용기 반경을 결정하였다. 계산 결과 실린더 좌표계에서의 해를 이용할 경우 기존의 Marsh 모델보다 음 전류 밀도 값을 25 % 감소시켰다.

Keywords

References

  1. 최종원, 전관식, 최희주, 이종열, 권영주. 한국형 고준위 폐기물 처분용기 열 및 크립해석. KAERI/TR-2691/2004. 2004
  2. Hennansson HP and Eriksson S. Corrosion of the Copper Canister in the Repository Environment. SKI report 99:L52. 1999
  3. OECD/NEA. Engineered Barrier Systems and the Safety of Deep Geological Repositories. ISBN 92-64-18498-8. OECD, 2003
  4. JNC. H12 Project to Establish Technical Basis for HLW Disposal in Japan. JNC TN. 1999
  5. Marsh GP and Taylor KJ. An Assessment of Carbon Steel Containers for Radioactive Waste Disposal. Corrosion Science. 1988;28:289-320 https://doi.org/10.1016/0010-938X(88)90111-4
  6. Marsh GP, Harker AH, and Taylor KJ. Corrosion of Carbon Steel Nuclear Waste Containers in Marine Sediment. Corrosion, 1989;45:579-589 https://doi.org/10.5006/1.3577876
  7. Marsh GP. Progress in the Assessment of the Corrosion of Low and Intermediate Level Waste Containers under Repository Conditions. NSS/R126. UKAEA, 1988
  8. Sharland SM and Tasker PW. The Aeration of a Model Nuclear Waste Repository. AERE Report TP-1182. 1987
  9. Carslaw HS and Jaegar JC. Conduction of Heat in Solids, Oxford University Press. Great Britain, 1947
  10. Briesmeister JF. MCNP-A General Monte Carlo N-Particle Transport Code, Version 4C. LA-13709-M. Los Alamos National Laboratory, 2000
  11. Croff AG. A User's Manual for the ORIGEN2 Computer Code. ORNL/TM/7175. Oak Ridge National Laboratory, 1980
  12. Hicks T and Prescott A. A Study of Criticality in a Spent Fuel Repository Based on Current Canister Designs. SKI Report 00:13. Swedish Nuclear Power Inspector, 2000