• Title/Summary/Keyword: Carbon/carbon-based materials

Search Result 1,325, Processing Time 0.028 seconds

Influence Nb Addition and Transformation Temperature on Impact Properties of Low-Carbon Steels (Nb 첨가에 따른 저탄소강의 충격 특성에 미치는 변태 온도의 영향)

  • Lee, Sang-In;Kang, Jun-Young;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.590-597
    • /
    • 2016
  • In this study, six kinds of low-carbon steel specimens with different ferrite-pearlite microstructures were fabricated by varying the Nb content and the transformation temperature. The microstructural factors of ferrite grain size, pearlite fraction, interlamellar spacing, and cementite thickness were quantitatively measured based on optical and scanning electron micrographs; then, Charpy impact tests were conducted in order to investigate the correlation of the microstructural factors with the impact toughness and the ductile-brittle transition temperature (DBTT). The microstructural analysis results showed that the Nb4 specimens had ferrite grain size smaller than that of the Nb0 specimens due to the pinning effect resulting from the formation of carbonitrides. The pearlite interlamellar spacing and the cementite thickness also decreased as the transformation temperature decreased. The Charpy impact test results indicated that the impact-absorbed energy increased and the ductile-brittle transition temperature decreased with addition of Nb content and decreasing transformation temperature, although all specimens showed ductile-brittle transition behaviour.

Hardness and Corrosion Resistance of Surface Composites Fabricated with Fe-based Metamorphic Powders by High-energy Electron Beam Irradiation

  • Nam, Dukhyun;Lee, Kyuhong;Lee, Sunghak;Young, Kyoo
    • Corrosion Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.301-306
    • /
    • 2008
  • Surface composite layers of 1.9~2.9 mm in thickness were fabricated by depositing metamorphic powders on a carbon steel substrate and by irradiating with a high-energy electron beam. In the surface composite layers, 48~64 vol.% of $Cr_{2}B$ or $Cr_{1.65}Fe_{0.35}B_{0.96}$ borides were densely precipitated in the austenite or martensite matrix. These hard borides improved the hardness of the surface composite layer. According to the otentiodynamic polarization test results of the surface composites, coatings, STS304 stainless steel, and carbon steel substrate, the corrosion potential of the surface composite fabricated with 'C+' powders was highest, and its corrosion current density was lowest, while its pitting potential was similar to that of the STS304 steel. This indicated that the overall corrosion resistance of the surface composite fabricated with 'C+' powders was the best among the tested materials. Austenite and martensite phases of the surface composites and coatings was selectively corroded, while borides were retained inside pits. In the coating fabricated with 'C+' powders, the localized corrosion additionally occurred along splat boundaries, and thus the corrosion resistance of the coating was worse than that of the surface composite.

Fabrication of CNT/MgCl2-Supported Ti-based Ziegler-Natta Catalysts for Trans-selective Polymerization of Isoprene

  • Cao, Lan;Zhang, Xiaojie;Wang, Xiaolei;Zong, Chengzhong;Kim, Jin Kuk
    • Elastomers and Composites
    • /
    • v.53 no.3
    • /
    • pp.158-167
    • /
    • 2018
  • In this study, in-situ trans-selective polymerization of isoprene was carried out using titanium-based Ziegler-Natta catalysts. The catalysts were prepared by high-energy ball milling. Individually Large-inner-diameter carbon nanotubes (CNTL), and hydroxylated carbon nanotubes (CNTOH), along with magnesium chloride ($MgCl_2$) were used as the carriers for the catalysts. The optimum ball-milling time for preparing the $CNT/MgCl_2/TiCl_4$ Ziegler-Natta catalysts was 4 h. The $CNTOH/MgCl_2/TiCl_4$ catalyst showed a higher efficiency than that of the $CNTL/MgCl_2/TiCl_4$ catalyst, based on the rate of polymerization. The effects of the CNT-filler type on the isoprene polymerization behaviors and polymer properties were investigated. The morphologies of the trans-1,4-polyisoprene (TPI)/CNT and TPI/CNTOH nanocomposites exhibited a tube-like shape, and the CNTL and CNTOH fillers were well dispersed in the TPI matrix. In addition, the thermal stability of TPI significantly increased upon the introduction of a small amount of both CNTL/CNTOH fillers (0.15 wt%), owing to the satisfactory dispersion of the CNTL/CNTOH in the TPI matrix.

Construction Materials Managing System Based on RFID (RFID 기반의 건축자재 관리 시스템)

  • Kim, Tae-yun;Hwang, Suk-seung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.907-914
    • /
    • 2015
  • Due to the global warming, the restriction for emitting the green-house gas is strengthened and a main ingredient of the green-house gas is carbon dioxide ($CO_2$). In order to reduce the amount of $CO_2$, the low-carbon and long-life of the construction and the construction materials management system based on the radio frequency identification (RFID) technique have been actively studied in the construction field. The conventional construction management system based on RFID only focuses on the study and experiment for managing the used amount and location of the construction materials in the construction stage, but it does not consider the study for the status management system for the recycling materials in the construction stage or the building deactivation. In this paper, we propose the effective RFID system for managing the status of the construction materials during the construction stage or the building deactivation. Employing RFID with the frequency of 900MHz, the proposed system consists of the reader unit, communication unit, and memory unit, and its tags are attached in the surface or inside of the construction materials.

Evaluation of Adhesion and Electrical Properties of CNT/PU Topcoat with Different CNT Weight Fraction for Aircraft (탄소나노튜브의 함량에 따른 항공기용 탄소나노튜브/폴리우레탄 탑코트의 접착 및 전기적 특성 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kim, So-Yeon;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Dispersion and electrical resistance (ER) properties of polyurethane (PU) type topcoat were evaluated using carbon nanotube (CNT) with different CNT weight fraction. CNT was dispersed in PU type topcoat using ultra sonication dispersion method. CNT/PU topcoat was coated on carbon fiber reinforced epoxy composite (CFRC) surface using gravity feed spraying method. Static contact angles of CFRC and CNT/PU topcoat were performed using 4 types of solvents to calculate the work of adhesion between CNT/PU topcoat and CFRC surface. Surface resistance of CNT added PU topcoat was measured to determine CNT dispersion. Adhesion property between CNT/PU topcoat and CFRC was determined via cross hatch cutting test based on ASTM D3359. The optimized condition of CNT weight fraction was found.

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery (Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교)

  • Kim, Kyoungho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.

Characteristics of early strength development of blended cement according to the addition of C-S-H based Hardening acceleration (C-S-H계 조강제 첨가에 따른 혼합시멘트의 조기 강도 발현 특성)

  • An, Tae-Yun;Ra, Jeong-Min;Park, Jun-Hyung;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.127-128
    • /
    • 2022
  • In order to realize carbon neutrality in the international society, research on supplementary cementitious materials(SCMs) has been actively conducted as a way to reduce carbon dioxide emissions in the cement industry. However, the use of SCMs causes problems of initial hydration delay and strength reduction due to the reduction of tricalcium silicate(C3S) in the cement clinker. Therefore, in this study, the initial hydration and basic characteristics of cement mortar were confirmed by adding a C-S-H based hardening acceleration to blended cement mixed with Portland cement, blast furnace slag, fly ash, and limestone power. As a result of the heat of hydration and compressive strength test, it was confirmed that when hardening acceleration was added, the initial reactivity was high, so the heat of hydration was promoted, and the initial strength was increased. It is considered to be due to C-S-H seeding effect. Therefore, it is judged that the use of C-S-H based hardening acceleration can supplement the problem of initial hydration delay of blended cement in Korea.

  • PDF

Optical sensitivity of DNA-dispersed single-walled carbon nanotubes within cement composites under mechanical load

  • Kim, Jin Hee;Rhee, Inkyu;Jung, Yong Chae;Ha, Sumin;Kim, Yoong Ahm
    • Carbon letters
    • /
    • v.24
    • /
    • pp.90-96
    • /
    • 2017
  • We demonstrated the sensitivity of optically active single-walled carbon nanotubes (SWCNTs) with a diameter below 1 nm that were homogeneously dispersed in cement composites under a mechanical load. Deoxyribonucleic acid (DNA) was selected as the dispersing agent to achieve a homogeneous dispersion of SWCNTs in an aqueous solution, and the dispersion state of the SWCNTs were characterized using various optical tools. It was found that the addition of a large amount of DNA prohibited the structural evolution of calcium hydroxide and calcium silicate hydrate. Based on the in-situ Raman and X-ray diffraction studies, it was evident that hydrophilic functional groups within the DNA strongly retarded the hydration reaction. The optimum amount of DNA with respect to the cement was found to be 0.05 wt%. The strong Raman signals coming from the SWCNTs entrapped in the cement composites enabled us to understand their dispersion state within the cement as well as their interfacial interaction. The G and G' bands of the SWCNTs sensitively varied under mechanical compression. Our results indicate that an extremely small amount of SWCNTs can be used as an optical strain sensor if they are homogeneously dispersed within cement composites.

Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption (불소화 탄소나노튜브를 적용한 저에너지 소모형 축전식 탈염전극의 제조 및 특성)

  • Yoo, Hyun-woo;Kang, Ji-hyun;Park, Nam-soo;Kim, Tae-il;Kim, Min-Il;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.386-390
    • /
    • 2016
  • The surface of carbon nanotubes (CNTs) was modified by fluorination and applied to conductive materials to improve the energy efficiency of a capacitive desalination (CDI) electrode. CNTs were fluorinated at room temperature with a mixed gas of fluorine and nitrogen, and activated carbon based CDI electrodes were then prepared by adding 0-0.5 wt% of untreated CNTs or fluorinated CNTs with respect to the activated carbon. Fluorinated CNTs showed improved dispersibility in the electrode and also slurry as compared to untreated CNTs, which was confirmed by the zeta potential and scanning electron microscopy. Fluorinated CNTs added electrodes showed higher desalination efficiency but lower energy consumption than those of using untreated CNTs added electrodes. This was attributed to the decrease in the resistance of CDI electrodes due to the improved dispersibility of CNTs by fluorination.

Performance of carbon fiber added to anodes of conductive cement-graphite pastes used in electrochemical chloride extraction in concretes

  • Pellegrini-Cervantes, M.J.;Barrios-Durstewitz, C.P.;Nunez-Jaquez, R.E.;Baldenebro-Lopez, F.J.;Corral-Higuera, R.;Arredondo-Rea, S.P.;Rodriguez-Rodriguez, M.;Llanes-Cardenas, O.;Beltran-Chacon, R.
    • Carbon letters
    • /
    • v.26
    • /
    • pp.18-24
    • /
    • 2018
  • Pollution of chloride ion-reinforced concrete can trigger active corrosion processes that reduce the useful life of structures. Multifunctional materials used as a counter-electrode by electrochemical techniques have been used to rehabilitate contaminated concrete. Cement-based pastes added to carbonaceous material, fibers or dust, have been used as an anode in the non-destructive Electrochemical Chloride Extraction (ECE) technique. We studied the performance of the addition of Carbon Fiber (CF) in a cement-graphite powder base paste used as an anode in ECE of concretes contaminated with chlorides from the preparation of the mixture. The experimental parameters were: 2.3% of free chlorides, 21 days of ECE application, a Carbon Fiber Volume Fraction (CFVF) of 0.1, 0.3, 0.6, 0.9%, a lithium borate alkaline electrolyte, a current density of $4.0A/m^2$ and a cement/graphite ratio of 1.0 for the paste. The efficiency of the ECE in the traditional technique using metal mesh as an anode was 77.6% and for CFVF of 0.9% it was 90.4%, with a tendency to increase to higher percentages of the CFVF in the conductive cement-graphite paste, keeping the pH stable and achieving a homogeneous ECE in the mass of the concrete contaminated with chlorides.