DOI QR코드

DOI QR Code

Preparation of Electrocatalysts and Comparison of Electrode Interface Reaction for Hybrid Type Na-air Battery

Hybrid type Na-air battery를 위한 촉매들의 제조 및 전극 계면 반응 성능 비교

  • Kim, Kyoungho (Department of Chemical Industry, Dong-Eui Institute of Technology (DIT))
  • 김경호 (동의과학대학교 화학공업과)
  • Received : 2020.11.19
  • Accepted : 2021.01.08
  • Published : 2021.03.31

Abstract

The importance of high capacity energy storage devices has recently emerged for stable power supply through renewable energy generation. From this point of view, the Na-air battery (NAB), which is a next-generation secondary battery, is receiving huge attention because it can realize a high capacity through abundant and inexpensive raw materials. In this study, activated carbon-based catalysts for hybrid type Na-air batteries were prepared and their characteristics were compared and analysed. In particular, from the viewpoint of resource recycling, activated carbon (Orange-C) was prepared using discarded orange peel, and performance was compared with Vulcan carbon, which is widely used. In addition, a Pt/C catalyst (homemade-Pt/C, HM-Pt/C) was synthesized using a modified polyol method to check whether the prepared activated carbon can be used as a supported catalyst, and a commercial Pt/C catalyst (Commercial Pt/C) and electrochemical performance were compared. The prepared Orange-C exhibited a typical H3 type BET isotherm, which is evidence that micropore and mesopore exist. In addition, in the case of HM-Pt/C, it was confirmed through TEM analysis that Pt particles were evenly distributed on the activated carbon supported catalyst. In particular, the HM-Pt/C-based NAB showed the smallest voltage gap (0.224V) and good voltage efficiency (92.34%) in the 1st galvanostatic charge-discharge test. In addition, the cycle performance test conducted for 20 cycles showed the most stable performance.

신재생 에너지 발전을 통한 안정적인 전력 공급을 위해 대용량 에너지 저장 장치의 중요성이 최근 부각되고 있다. 이러한 관점에서 차세대 이차 전지인 Na-air battery (NAB)는 풍부하고 저렴한 원재료를 통해 대용량을 구현할 수 있어 많은 관심을 받고 있다. 본 연구에서는 Hybrid type Na-air battery를 위한 활성탄 기반 촉매들을 제조하여 이들의 특성을 비교 분석하였다. 특히, 자원 재활용의 관점에서 버려진 오렌지 껍질을 사용하여 활성탄(Orange-C)과 이를 질소를 이용하여 도핑한 활성탄(N-doped-Carbon, Nd-C)을 제조하였으며, 널리 사용되고 있는 Vulcan카본과 성능을 비교하였다. 또한, 제조한 활성탄(Nd-C)이 지지 촉매로 활용 가능한지 확인하기 위해 수정된 폴리올법을 사용하여 Pt/C 촉매(homemade-Pt/C, HM-Pt/C)를 합성하였으며, 상용화된 Pt/C 촉매(Commercial Pt/C)와 전기화학적 성능을 비교하였다. 제조된 Orange-C와 Nd-C는 전형적인 H3 타입 BET isotherm을 보였으며, 이는 마이크로 기공과 메조기공이 존재한다는 증거이다. 또한, HM-Pt/C의 경우, 활성탄(Nd-C) 지지 촉매 위에 Pt 입자가 고르게 분포하고 있음을 TEM 분석을 통해 확인할 수 있었다. 특히, HM-Pt/C 기반의 NAB의 경우, 1st galvanostatic charge-discharge 시험에서 가장 작은 Voltage gap (0.224V)과 우수한 Voltage efficiency (92.34%)를 보였다. 또한, 20사이클 동안 진행한 사이클 성능 시험에서도 가장 안정적인 성능을 보였다.

Keywords

References

  1. V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy. Environ. Sci., 4, 3243 (2011) https://doi.org/10.1039/c1ee01598b
  2. H. Yadegari, L. Yongliang, M.N. Banis, X. Li, B. Wang, Q. Sun, R. Li, T.-K. Sham, X. Cui, X. Sun, Energy Environ. Sci., 7, 3747 (2014) https://doi.org/10.1039/C4EE01654H
  3. P. K. Nayak, E. M. Erickson, F. Schipper, T. R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, R. Amalraj, B. Markovsky, and D. Aurbach, Adv. Energy Mater, 8, 1702397 (2018) https://doi.org/10.1002/aenm.201702397
  4. X. D. Zhang, J. L. Shi, J. Y. Liang, Y. X. Yin, J. N. Zhang, X. Q. Yu, and Y. G. Guo, Adv. Mater, 30, 1801751 (2018) https://doi.org/10.1002/adma.201801751
  5. K. Kim, and J. K. Kim, Materials Letters, 176, 244 (2016) https://doi.org/10.1016/j.matlet.2016.04.145
  6. K. Kim, M. P. Kim and W. G. Lee, New J. Chem., 41, 8864 (2017) https://doi.org/10.1039/C7NJ00863E
  7. W. J. Kwak, Z. H. Chen, C. S. Yoon, J. K. Lee, K. Amine and Y. K. Sun, Nano Energy, 12, 123 (2015) https://doi.org/10.1016/j.nanoen.2014.11.057
  8. P. He, Y. G. Wang and H. S. Zhou, Electrochem Commun., 12, 1686 (2010). https://doi.org/10.1016/j.elecom.2010.09.025
  9. J. Y. Cheon, K. Kim, Y. J. Sa, S. H. Sahgong, Y. Hong, J. Woo, S-D Yim, H. Y. Jeong, Y. Kim, and S. H. Joo, Adv. Energy Mater., 6, 1501784 (2016)
  10. P. Hartmann, C.-L. Bender, M. Vracar, A.-K. Durr, A. Garsuch, J. Janek, P. Adelhelm, Nat. Mater., 12, 228 (2013) https://doi.org/10.1038/nmat3486
  11. K. Hayashi, K. Shima, F. Sugiyama, J. Electrochem. Soc., 160, A1467 (2013) https://doi.org/10.1149/2.067309jes
  12. K. Kim, S. Hwang, J. Park, J. Han, J. Kim, Y. Kim, J. Power Sources, 313, 46 (2016) https://doi.org/10.1016/j.jpowsour.2016.02.060
  13. H. Kim, J. Park, S. Sahgong, S. Park, J. Kim, Y. Kim, J. Mater. Chem. A., 2, 19584 (2014) https://doi.org/10.1039/C4TA04937C
  14. S. Konwer and S. Dolui, Mater. Chem. Phys., 124, 738 (2010) https://doi.org/10.1016/j.matchemphys.2010.07.049
  15. K. Kim, Y. Na, M. Lee, J. Korean Electrochem. Soc., 21, 61 (2018) https://doi.org/10.5229/JKES.2018.21.4.61
  16. H. N. Thi Le, H. K. Jeong, New Physics: Sae Mulli, 65, 86 (2015) https://doi.org/10.3938/NPSM.65.86
  17. J. Yang, C. Chu, Y. Kwon, J. Ener. Eng., 23, 157 (2014) https://doi.org/10.5855/ENERGY.2014.23.3.157
  18. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure & Appl. Chem., 57, 603 (1985) https://doi.org/10.1351/pac198557040603
  19. J. Zhang, Springer (2008)