DOI QR코드

DOI QR Code

Optical sensitivity of DNA-dispersed single-walled carbon nanotubes within cement composites under mechanical load

  • Kim, Jin Hee (Faculty of Engineering, Chonnam National University) ;
  • Rhee, Inkyu (Department of Civil Engineering, Chonnam National University) ;
  • Jung, Yong Chae (Multifunctional Structural Composite Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST)) ;
  • Ha, Sumin (School of Polymer Science and Engineering, Department of Polymer Engineering, Graduate School & Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Kim, Yoong Ahm (School of Polymer Science and Engineering, Department of Polymer Engineering, Graduate School & Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
  • Received : 2017.05.16
  • Accepted : 2017.06.09
  • Published : 2017.10.31

Abstract

We demonstrated the sensitivity of optically active single-walled carbon nanotubes (SWCNTs) with a diameter below 1 nm that were homogeneously dispersed in cement composites under a mechanical load. Deoxyribonucleic acid (DNA) was selected as the dispersing agent to achieve a homogeneous dispersion of SWCNTs in an aqueous solution, and the dispersion state of the SWCNTs were characterized using various optical tools. It was found that the addition of a large amount of DNA prohibited the structural evolution of calcium hydroxide and calcium silicate hydrate. Based on the in-situ Raman and X-ray diffraction studies, it was evident that hydrophilic functional groups within the DNA strongly retarded the hydration reaction. The optimum amount of DNA with respect to the cement was found to be 0.05 wt%. The strong Raman signals coming from the SWCNTs entrapped in the cement composites enabled us to understand their dispersion state within the cement as well as their interfacial interaction. The G and G' bands of the SWCNTs sensitively varied under mechanical compression. Our results indicate that an extremely small amount of SWCNTs can be used as an optical strain sensor if they are homogeneously dispersed within cement composites.

Keywords

References

  1. Gagg RC. Cement and concrete as an engineering material: an historic appraisal and case study analysis. Eng Failure Anal, 40, 114 (2014). https://doi.org/10.1016/j.engfailanal.2014.02.004.
  2. Li H, Xiao HG, Yuan J, Ou J. Microstructure of cement mortar with nano-particles. Compos Part B Eng, 35, 185 (2004). https://doi.org/10.1016/S1359-8368(03)00052-0.
  3. Lilkov V, Rostovsky I, Petrov O, Tzvetanova Y, Savov P. Long term study of hardened cement pastes containing silica fume and fly ash. Constr Build Mater, 60, 48 (2014). https://doi.org/10.1016/j.conbuildmat.2014.02.045.
  4. Horszczaruk E, Mijowska E, Cendrowski K, Mijowska S, Sikora P. Effect of incorporation route on dispersion of mesoporous silica nanospheres in cement mortar. Constr Build Mater, 66, 418 (2014). https://doi.org/10.1016/j.conbuildmat.2014.05.061.
  5. Meng T, Yu Y, Qian X, Zhan S, Qian K. Effect of nano-$TiO_2$ on the mechanical properties of cement mortar. Constr Build Mater, 29, 241 (2012). https://doi.org/10.1016/j.conbuildmat.2011.10.047.
  6. Li GY, Wang PM, Zhao X. Mechanical behavior and microstructure of cement composites incorporating surface-treated multiwalled carbon nanotubes. Carbon, 43, 1239 (2005). https://doi.org/10.1016/j.carbon.2004.12.017.
  7. Saez de Ibarra Y, Gaitero JJ, Erkizia E, Campillo I. Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Phys Status Solidi A, 203, 1076 (2006). https://doi.org/10.1002/pssa.200566166.
  8. Wansom S, Kidner NJ, Woo LY, Mason TO. AC-impedance response of multi-walled carbon nanotube/cement composites. Cem Concr Compos, 28, 509 (2006). https://doi.org/10.1016/j.cemconcomp.2006.01.014.
  9. Li GY, Wang PM, Zhao X. Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cem Concr Compos, 29, 377 (2007). https://doi.org/10.1016/j.cemconcomp.2006.12.011.
  10. Cwirzen A, Habermehl-Cwirzen K, Penttala V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites. Adv Cem Res, 20, 65 (2008). https://doi.org/10.1680/adcr.2008.20.2.65.
  11. Han B, Yu X, Kwon E. A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology, 20, 445501 (2009). https://doi.org/10.1088/0957-4484/20/44/445501.
  12. Musso S, Tulliani JM, Ferro G, Tagliaferro A. Influence of carbon nanotubes structure on the mechanical behavior of cement composites. Compos Sci Technol, 69, 1985 (2009). https://doi.org/10.1016/j.compscitech.2009.05.002.
  13. Konsta-Gdoutos MS, Metaxa ZS, Shah SP. Highly dispersed carbon nanotube reinforced cement based materials. Cem Concr Res, 40, 1052 (2010). https://doi.org/10.1016/j.cemconres.2010.02.015.
  14. Siddique R, Mehta A. Effect of carbon nanotubes on properties of cement mortars. Constr Build Mater, 50, 116 (2014). https://doi.org/10.1016/j.conbuildmat.2013.09.019.
  15. Lv S, Ma Y, Qiu C, Sun T, Liu J, Zhou Q. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater, 49, 121 (2013). https://doi.org/10.1016/j.conbuildmat.2013.08.022.
  16. Rhee I, Kim YA, Shin GO, Kim JH, Muramatsu H. Compressive strength sensitivity of cement mortar using rice husk-derived graphene with a high specific surface area. Constr Build Mater, 96, 189 (2015). https://doi.org/10.1016/j.conbuildmat.2015.08.016.
  17. Makar JM, Chan GW. Growth of cement hydration products on single-walled carbon nanotubes. J Am Ceram Soc, 92, 1303 (2009). https://doi.org/10.1111/j.1551-2916.2009.03055.x.
  18. Li X, Wei W, Qin H, Hu YH. Co-effects of graphene oxide sheets and single wall carbon nanotubes on mechanical properties of cement. J Phys Chem Solids, 85, 39 (2015). https://doi.org/10.1016/j.jpcs.2015.04.018.
  19. Dresselhaus MS, Dresselhaus G, Eklund PC. Science of Fullerenes and Carbon Nanotubes, Academic Press, San Diego (1996).
  20. Kim YA, Yang KS, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Double-walled carbon nanotubes: synthesis, structural characterization, and application. Carbon Lett, 15, 77 (2014). http://dx.doi.org/10.5714/CL.2014.15.2.077.
  21. Lin Y, Taylor S, Li H, Shiral Fernando KA, Qu L, Wang W, Gu L, Zhou B, Sun YP. Advances toward bioapplications of carbon nanotubes. J Mater Chem, 14, 527 (2004). https://doi.org/10.1039/B314481J.
  22. Lee Y, Geckeler KE. Carbon nanotubes in the biological interphase: the relevance of noncovalence. Adv Mater, 22, 4076 (2010). https://doi.org/10.1002/adma.201000746.
  23. Karajanagi SS, Yang H, Asuri P, Sellitto E, Dordick JS, Kane RS. Protein-assisted solubilization of single-walled carbon nanotubes. Langmuir, 22, 1392 (2006). https://doi.org/10.1021/la0528201.
  24. Nepal D, Geckeler KE. pH-sensitive dispersion and debundling of single-walled carbon nanotubes: lysozyme as a tool. Small, 2, 406 (2006). https://doi.org/10.1002/smll.200500351.
  25. Kim JH, Kataoka M, Kim YA, Shimamoto D, Muramatsu H, Hayashi T, Endo M, Terrones M, Dresselhaus MS. Diameter-selective separation of double-walled carbon nanotubes. Appl Phys Lett, 93, 223107 (2008). https://doi.org/10.1063/1.3039790.
  26. Kim JH, Kataoka M, Shimamoto D, Muramatsu H, Jung YC, Tojo T, Hayashi T, Kim YA, Endo M, Terrones M, Dresselhaus MS. Defect-enhanced dispersion of carbon nanotubes in DNA solutions. Chem Phys Chem, 10, 2414 (2009). https://doi.org/10.1002/cphc.200900362.
  27. Kim JH, Kataoka M, Shimamoto D, Muramatsu H, Jung YC, Hayashi T, Kim YA, Endo M, Park JS, Saito R, Terrones M, Dresselhaus MS. Raman and fluorescence spectroscopic studies of a DNA-dispersed double-walled carbon nanotube solution. ACS Nano, 4, 1060 (2010). https://doi.org/10.1021/nn901871g.
  28. O'Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE. Reversible watersolubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett, 342, 265 (2001). https://doi.org/10.1016/S0009-2614(01)00490-0.
  29. O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS, Haroz EH, Rialon KL, Boul PJ, Noon WH, Kittrell C, Ma J, Hauge RH, Weisman RB, Smalley RE. Band gap fluorescence from individual single-walled carbon nanotubes. Science, 297, 593 (2002). https://doi.org/10.1126/science.1072631.
  30. Heller DA, Barone PW, Swanson JP, Mayrhofer RM, Strano MS. Using Raman spectroscopy to elucidate the aggregation state of single-walled carbon nanotubes. J Phys Chem B, 108, 6905 (2004). https://doi.org/10.1021/jp037690o.
  31. Strano MS, Moore VC, Miller MK, Allen MJ, Haroz EH, Kittrell C, Hauge RH, Smalley RE. The role of surfactant adsorption during ultrasonication in the dispersion of single-walled carbon nanotubes. J Nanosci Nanotechnol, 3, 81 (2003). https://doi.org/10.1166/jnn.2003.194.
  32. Bullard JW, Jennings HM, Livingston RA, Nonat A, Scheer GW, Schweitzer JS, Scrivener KL, Thomas JJ. Mechanisms of cement hydration. Cem Concr Res, 41, 1208 (2011). https://doi.org/10.1016/j.cemconres.2010.09.011.
  33. Liu F, Sun Z, Qi C. Raman spectroscopy study on the hydration behaviors of Portland cement pastes during setting. J Mater Civ Eng, 27, 04014223 (2014).
  34. Deng CS, Breen C, Yarwood J, Habesch S, Phipps J, Craster R, Maitland G. Ageing of oilfield cement at high humidity: a combined FEG-ESEM and Raman microscopic investigation. J Mater Chem, 12, 3105 (2002). https://doi.org/10.1039/B203127M.
  35. Shoda M, Bandow S, Maruyama Y, Iijima S. Probing interaction between ssDNA and carbon nanotubes by Raman scattering and electron microscopy. J Phys Chem C, 113, 6033 (2009). https://doi.org/10.1021/jp8109572.
  36. Cha M, Jung S, Cha MH, Kim G, Ihm J, Lee J. Reversible metal-semiconductor transition of ssDNA-decorated single-walled carbon nanotubes. Nano Lett, 9, 1345 (2009). https://doi.org/10.1021/nl8029948.
  37. Andrade NF, Aguiar AL, Kim YA, Endo M, Freire PTC, Brunetto G, Galvao DS, Dresselhaus MS, Souza Filho AG. Linear carbon chains under high-pressure conditions. J Phys Chem C, 119, 10669 (2015). https://doi.org/10.1021/acs.jpcc.5b00902.
  38. Venkateswaran UD, Rao AM, Richter E, Menon M, Rinzler A, Smalley RE, Eklund PC. Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure. Phys Rev B, 59, 10928 (1999). https://doi.org/10.1103/PhysRevB.59.10928