DOI QR코드

DOI QR Code

Preparation and Characteristics of Fluorinated Carbon Nanotube Applied Capacitive Desalination Electrode with Low Energy Consumption

불소화 탄소나노튜브를 적용한 저에너지 소모형 축전식 탈염전극의 제조 및 특성

  • Received : 2016.04.19
  • Accepted : 2016.05.18
  • Published : 2016.08.10

Abstract

The surface of carbon nanotubes (CNTs) was modified by fluorination and applied to conductive materials to improve the energy efficiency of a capacitive desalination (CDI) electrode. CNTs were fluorinated at room temperature with a mixed gas of fluorine and nitrogen, and activated carbon based CDI electrodes were then prepared by adding 0-0.5 wt% of untreated CNTs or fluorinated CNTs with respect to the activated carbon. Fluorinated CNTs showed improved dispersibility in the electrode and also slurry as compared to untreated CNTs, which was confirmed by the zeta potential and scanning electron microscopy. Fluorinated CNTs added electrodes showed higher desalination efficiency but lower energy consumption than those of using untreated CNTs added electrodes. This was attributed to the decrease in the resistance of CDI electrodes due to the improved dispersibility of CNTs by fluorination.

축전식 탈염전극의 에너지 효율을 향상시키기 위하여 탄소나노튜브를 불소화 표면처리하고 이를 도전재로 적용하였다. 탄소나노튜브는 상온에서 불소와 질소의 혼합가스로 불소화 처리되었으며, 미처리 탄소나노튜브와 불소화 탄소나노튜브를 각각 활성탄소 대비 0~0.5 wt% 첨가하여 활성탄소 기반 축전식 탈염전극을 제조하였다. 불소화 탄소나노튜브는 미처리 탄소나노튜브에 비하여 전극 슬러리 및 전극 내에서 분산성이 향상된 것을 제타 전위와 전자주사현미경을 통해 확인하였다. 불소화 탄소나노튜브를 첨가한 전극은 미처리 탄소나노튜브를 첨가한 전극보다 전체적으로 높은 탈염효율을 보였으며, 에너지 소비량 역시 감소하였다. 이는 불소화 표면처리로 인한 탄소나노튜브의 분산성 향상으로 인해 축전식 탈염 전극의 저항이 감소되었기 때문이다.

Keywords

References

  1. Y. Liu, T. Lu, Z. Sun, D. H. C. Chua, and L. Pan, Ultra-thin carbon nanofiber networks derived from bacterial cellulose for capacitive deionization, J. Mater. Chem. A, 3, 8693-8700 (2015). https://doi.org/10.1039/C5TA00435G
  2. D. J. Lee, M. S. Kang, S. H. Lee, and J. S. Park, Application of capacitive deionization for desalination of mining water, J. Korean Electrochem. Soc., 17, 37-43 (2014). https://doi.org/10.5229/JKES.2014.17.1.37
  3. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment past, present and future (a review), Desalination, 228, 10-29 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  4. P. F. Cai, C. J. Su, W. T. Chang, F. C. Chang, C. Y. Peng, I. W. Sun, Y. L. Wei, C. J. Jou, and H. P. Wang, Capacitive deionization of seawater effected by nano Ag and Ag@C on graphene, Mar. Pollut. Bull., 85, 733-737 (2014). https://doi.org/10.1016/j.marpolbul.2014.05.020
  5. A. Omosebi, X. Gao, J. Landon, and K. Liu, Asymmetric Electrode Configuration for Enhanced Membrane Capacitive Deionization, Appl. Mater. Interfaces, 6, 12640-12649 (2014). https://doi.org/10.1021/am5026209
  6. Y. Zhang, L. Zou, B. P. Ladewig, and D. Mulcahy, Synthesis and characterisation of superhydrophilic conductive heterogeneous PANI/PVDF anion-exchange membranes, Desalination, 362, 59-67 (2015). https://doi.org/10.1016/j.desal.2015.02.004
  7. T. Y. Kim, Analysis of influential factors on deionization capacity and rate in capacitive deionization, PhD Dissertation, Seoul National University, Seoul, Korea (2014).
  8. J. S. Kim and J. H. Choi, Fabrication and characterization of a carbon electrode coated with cation-exchange polymer for the membrane capacitive deionization applications, J. Membr. Sci., 355, 85-90 (2010). https://doi.org/10.1016/j.memsci.2010.03.010
  9. H. Li and L. Zou, Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination, Desalination, 275, 62-66 (2011). https://doi.org/10.1016/j.desal.2011.02.027
  10. M. Mossad and L. Zou, Study of fouling and scaling in capacitive deionization by using dissolved organic and inorganic salts, J. Hazard. Mater., 244-245, 387-393 (2013). https://doi.org/10.1016/j.jhazmat.2012.11.062
  11. J. S. Kim, C. S. Kim, H. S. Shin, and J. W. Rhim, Application of synthesized anion and cation exchange polymers to membrane capacitive deionization (MCDI), Macromol. Res., 23, 360-366 (2015). https://doi.org/10.1007/s13233-015-3049-6
  12. J. A. Lim, N. S. Park, J. S. Park, and J. H. Choi, Fabrication and characterization of a porous carbon electrode for desalination of brackish water, Desalination, 238, 37-42 (2009). https://doi.org/10.1016/j.desal.2008.01.033
  13. C. J. Gabelich, T. D. Tran, and I. H. "Mel" Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36, 3010-3019 (2002). https://doi.org/10.1021/es0112745
  14. G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, and J. Qiu, Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem., 22, 21819-21823 (2012). https://doi.org/10.1039/c2jm34890j
  15. H. Li, L. Zou, L. Pan, and Z. Sun, Novel graphene-like electrodes for capacitive deionization, Environ. Sci. Technol., 44, 8692-8697 (2010). https://doi.org/10.1021/es101888j
  16. L. Wang, M. Wang, Z. H. Huang, T. Cui, X. Gui, F. Kang, K. Wang, and D. Wu, Capacitive deionization of NaCl solutions using carbon nanotube sponge electrodes, J. Mater. Chem., 21, 18295-18299 (2011). https://doi.org/10.1039/c1jm13105b
  17. E. Garcia-Quismondo, R. Gomez, F. Vaquero, A. L. Cudero, J. Palma, and M. Anderson, New testing procedures of a capacitive deionization reactor, Phys. Chem. Chem. Phys., 15, 7648-7656 (2013). https://doi.org/10.1039/c3cp50514f
  18. P. Potschke, A. R. Bhattacharyya, and A. Janke, Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion, Eur. Polym. J., 40, 137-148 (2004). https://doi.org/10.1016/j.eurpolymj.2003.08.008
  19. D. S. Hecht, A. M. Heintz, R. Lee, L. Hu, B. Moore, C. Cucksey, and S. Risser, High conductivity transparent carbon nanotube films deposited from superacid, Nanotechnology, 22, 075201 (2011). https://doi.org/10.1088/0957-4484/22/7/075201
  20. G. W. Lee and J. T. Han, Dispersion of Carbon Nanotubes (CNTs) and CNT-based Transparent Conductive Films, Korean Ind. Chem. News, 10, 8-19 (2007).
  21. J. S. Im, I. J. Park, S. J. In, T. Kim, and Y. S. Lee, Fluorination effects of MWCNT additives for EMI shielding efficiency by developed conductive network in epoxy complex, J. Fluor. Chem., 130, 1111-1116 (2009). https://doi.org/10.1016/j.jfluchem.2009.06.022
  22. J. S. Im, S. C. Kang, B. C. Bai, T. S. Bae, S. J. In, E. Jeong, S. H. Lee, and Y. S. Lee, Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor, Carbon, 49, 2235-2244 (2011). https://doi.org/10.1016/j.carbon.2011.01.054
  23. E. J. Park, L. H. Bac, J. S. Kim, Y. S. Kwon, J. C. Kim, H. S. Choi, and Y. H. Chung, Production and Properties of Ag Metallic Nanoparticle Fluid by Electrical Explosion of Wire in Liquid, J. Korean Powder Metall. Inst., 16, 217-222 (2009). https://doi.org/10.4150/KPMI.2009.16.3.217
  24. H. J. Ha, Y. C. Kong, K. H. Do, and S. P. Jang, Experimental Investigation on Thermal Characteristics of Heat Pipes Using Water-based MWCNT Nanofluids, Korean J. Air Cond. Refrig. Eng., 23, 528-534 (2011). https://doi.org/10.6110/KJACR.2011.23.7.528
  25. Z. Peng, D. Zhang, L. Shi, and T. Yan, High performance ordered mesoporous carbon/carbon nanotube composite electrodes for capacitive deionization, J. Mater. Chem., 22, 6603-6612 (2012). https://doi.org/10.1039/c2jm16735b
  26. K. Dermentzis and K. Ouzounis, Continuous capacitive deionization-electrodialysis reversal through electrostatic shielding for desalination and deionization of water, Electrochim. Acta, 53, 7123-7130 (2008). https://doi.org/10.1016/j.electacta.2008.05.026
  27. R. Zhao, P. M. Biesheuvel, and A. van der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5, 9520-9527 (2012). https://doi.org/10.1039/c2ee21737f

Cited by

  1. 폴리페닐렌 옥사이드 음이온 교환막의 가교결합 vol.28, pp.5, 2016, https://doi.org/10.14579/membrane_journal.2018.28.5.326