• 제목/요약/키워드: Caputo-derivative

검색결과 55건 처리시간 0.019초

STABILITY PROPERTIES IN IMPULSIVE DIFFERENTIAL SYSTEMS OF NON-INTEGER ORDER

  • Kang, Bowon;Koo, Namjip
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.127-147
    • /
    • 2019
  • In this paper we establish some new explicit solutions for impulsive linear fractional differential equations with impulses at fixed times, which provides a handy tool in deriving singular integral-sum inequalities and an impulsive fractional comparison principle. Thus we study the Mittag-Leffler stability of impulsive differential equations with the Caputo fractional derivative by using the impulsive fractional comparison principle and piecewise continuous functions of Lyapunov's method. Also, we give some examples to illustrate our results.

EXISTENCE OF SOLUTION FOR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS VIA TOPOLOGICAL DEGREE METHOD

  • FAREE, TAGHAREED A.;PANCHAL, SATISH K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권1호
    • /
    • pp.16-25
    • /
    • 2021
  • This paper is studied the existence of a solution for the impulsive Cauchy problem involving the Caputo fractional derivative in Banach space by using topological structures. We based on using topological degree method and fixed point theorem with some suitable conditions. Further, some topological properties for the set of solutions are considered. Finally, an example is presented to demonstrate our results.

EXISTENCE AND STABILITY RESULTS OF GENERALIZED FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Kausika, C.;Balachandran, K.;Annapoorani, N.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • 제26권4호
    • /
    • pp.793-809
    • /
    • 2021
  • This paper gives sufficient conditions to ensure the existence and stability of solutions for generalized nonlinear fractional integrodifferential equations of order α (1 < α < 2). The main theorem asserts the stability results in a weighted Banach space, employing the Krasnoselskii's fixed point technique and the existence of at least one mild solution satisfying the asymptotic stability condition. Two examples are provided to illustrate the theory.

AN INVESTIGATION ON THE EXISTENCE AND UNIQUENESS ANALYSIS OF THE FRACTIONAL NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

  • Fawzi Muttar Ismaael
    • Nonlinear Functional Analysis and Applications
    • /
    • 제28권1호
    • /
    • pp.237-249
    • /
    • 2023
  • In this paper, by means of the Schauder fixed point theorem and Arzela-Ascoli theorem, the existence and uniqueness of solutions for a class of not instantaneous impulsive problems of nonlinear fractional functional Volterra-Fredholm integro-differential equations are investigated. An example is given to illustrate the main results.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.221-228
    • /
    • 2013
  • The method of upper and lower solutions and the generalized quasilinearization technique is developed for the existence and approximation of solutions to boundary value problems for higher order fractional differential equations of the type $^c\mathcal{D}^qu(t)+f(t,u(t))=0$, $t{\in}(0,1),q{\in}(n-1,n],n{\geq}2$ $u^{\prime}(0)=0,u^{\prime\prime}(0)=0,{\ldots},u^{n-1}(0)=0,u(1)={\xi}u({\eta})$, where ${\xi},{\eta}{\in}(0,1)$, the nonlinear function f is assumed to be continuous and $^c\mathcal{D}^q$ is the fractional derivative in the sense of Caputo. Existence of solution is established via the upper and lower solutions method and approximation of solutions uses the generalized quasilinearization technique.

APPROXIMATIONS OF SOLUTIONS FOR A NONLOCAL FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION WITH DEVIATED ARGUMENT

  • CHADHA, ALKA;PANDEY, DWIJENDRA N.
    • Journal of applied mathematics & informatics
    • /
    • 제33권5_6호
    • /
    • pp.699-721
    • /
    • 2015
  • This paper investigates the existence of mild solution for a fractional integro-differential equations with a deviating argument and nonlocal initial condition in an arbitrary separable Hilbert space H via technique of approximations. We obtain an associated integral equation and then consider a sequence of approximate integral equations obtained by the projection of considered associated nonlocal fractional integral equation onto finite dimensional space. The existence and uniqueness of solutions to each approximate integral equation is obtained by virtue of the analytic semigroup theory via Banach fixed point theorem. Next we demonstrate the convergence of the solutions of the approximate integral equations to the solution of the associated integral equation. We consider the Faedo-Galerkin approximation of the solution and demonstrate some convergenceresults. An example is also given to illustrate the abstract theory.

UNIVARIATE LEFT FRACTIONAL POLYNOMIAL HIGH ORDER MONOTONE APPROXIMATION

  • Anastassiou, George A.
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.593-601
    • /
    • 2015
  • Let $f{\in}C^r$ ([-1,1]), $r{\geq}0$ and let $L^*$ be a linear left fractional differential operator such that $L^*$ $(f){\geq}0$ throughout [0, 1]. We can find a sequence of polynomials $Q_n$ of degree ${\leq}n$ such that $L^*$ $(Q_n){\geq}0$ over [0, 1], furthermore f is approximated left fractionally and simulta-neously by $Q_n$ on [-1, 1]. The degree of these restricted approximations is given via inequalities using a higher order modulus of smoothness for $f^{(r)}$.

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • 대한수학회보
    • /
    • 제51권2호
    • /
    • pp.329-338
    • /
    • 2014
  • In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type $$^c{\mathcal{D}}^q_{0+}u(t)+f(t,u(t))=0,\;t{\in}(0,1)$$ $$u^{\prime}(0)={\gamma}u^{\prime}({\eta}),\;u^{\prime\prime}(0)=0,\;u^{\prime\prime\prime}(0)=0,{\ldots},u^{(n-1)}(0)=0,\;u(1)={\delta}u({\eta})$$, where, n-1 < q < n, $n({\geq}3){\in}\mathbb{N}$, 0 < ${\eta},{\gamma},{\delta}$ < 1 and $^c\mathcal{D}^q_{0+}$ is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • 제24권3호
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.