• Title/Summary/Keyword: Calculate

Search Result 11,142, Processing Time 0.038 seconds

SA Review on Necessity to Calculate Navigation Errors in UTM Environments with SE Process (SE프로세스를 적용한 UTM 환경의 항법 오차 산출 필요성 검토)

  • Ku, SungKwan;Ahn, Hyojung;Kim, DoHyun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.28 no.4
    • /
    • pp.47-54
    • /
    • 2020
  • This study carries out a basic study of ways to calculate navigation errors for aircraft operating in the unmanned aerial system traffic management(UTM). Recently, research by UTM has been carried out both at home and abroad, along with the initial study of system definitions at the basic stage, operational techniques of the aircraft, and the practicality of the concept of necessary operations at the actual operational stage. This study presented after a review the factors that should be considered for the calculation of navigation errors among the factors that examine whether the actual low altitude aircraft can operate properly within UTM during its actual operation and the need to apply them in practice.

Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Water

  • Song Hi Lee;Gyeong Keun Moon;Sang Gu Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.315-322
    • /
    • 1991
  • In a recent $paper^1$ we reported equilibrium (EMD) and non-equilibrium (NEMD) molecular dynamics simulations of liquid argon using the Green-Kubo relations and NEMD algorithms to calculate the thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity. The overall agreement with experimental data is quite good. In this paper the same technique is applied to calculate the thermal transport coefficients of liquid water at 298.15 K and 1 atm using TIP4P model for the interaction between water molecules. The EMD results show difficulty to apply the Green-Kubo relations since the time-correlation functions of liquid water are oscillating and not decaying rapidly enough except the velocity auto-correlation function. The NEMD results are found to be within approximately ${\pm}$30-40% error bars, which makes it possible to apply the NEMD technique to other molecular liquids.

Fall Situation Recognition by Body Centerline Detection using Deep Learning

  • Kim, Dong-hyeon;Lee, Dong-seok;Kwon, Soon-kak
    • Journal of Multimedia Information System
    • /
    • v.7 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • In this paper, a method of detecting the emergency situations such as body fall is proposed by using color images. We detect body areas and key parts of a body through a pre-learned Mask R-CNN in the images captured by a camera. Then we find the centerline of the body through the joint points of both shoulders and feet. Also, we calculate an angle to the center line and then calculate the amount of change in the angle per hour. If the angle change is more than a certain value, then it is decided as a suspected fall. Also, if the suspected fall state persists for more than a certain frame, then it is determined as a fall situation. Simulation results show that the proposed method can detect body fall situation accurately.

Jaya algorithm to solve single objective size optimization problem for steel grillage structures

  • Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.163-170
    • /
    • 2018
  • The purpose of this paper is to present a new and efficient optimization algorithm called Jaya for optimum design of steel grillage structure. Constrained size optimization of this type of structure based on the LRFD-AISC is carried out with integer design variables by using cross-sectional area of W-shapes. The objective function of the problem is to find minimum weight of the grillage structure. The maximum stress ratio and the maximum displacement in the inner point of steel grillage structure are taken as the constraint for this optimization problem. To calculate the moment and shear force of the each member and calculate the joint displacement, the finite elements analysis is used. The developed computer program for the analysis and design of grillage structure and the optimization algorithm for Jaya are coded in MATLAB. The results obtained from this study are compared with the previous works for grillage structure. The results show that the Jaya algorithm presented in this study can be effectively used in the optimal design of grillage structures.

Direct calculation of interface warping functions for considering longitudinal discontinuities in beams

  • Lee, Dong-Hwa;Kim, Hyo-Jin;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.80 no.5
    • /
    • pp.625-643
    • /
    • 2021
  • In this paper, we present a new method to calculate interface warping functions for the analysis of beams with geometric and material discontinuities in the longitudinal direction. The classical Saint Venant torsion theory is extended to a three-dimensional domain by considering the longitudinal direction. The interface warping is calculated by considering both adjacent cross-sections of a given interface. We also propose a finite element procedure to simultaneously calculate the interface warping function and the corresponding twisting center. The calculated interface warping functions are employed in the continuum-mechanics based beam formulation to analyze arbitrary shape cross-section beams with longitudinal discontinuities. Compared to the previous work by Yoon and Lee (2014a), both geometric and material discontinuities are considered with fewer degrees of freedom and higher accuracy in beam finite element analysis. Through various numerical examples, the effectiveness of the proposed interface warping function is demonstrated.

SIGNATURAL APPLICATIONS OF THE FRICKE GROUP ΓF (N)

  • Buyukkaragoz, Aziz;Unluyol, Erdal
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.296-309
    • /
    • 2022
  • In this paper, we establish the Fricke Group ΓF (N) which is a new special group of Non-Euclidean Crystallograhic (NEC) group. We obtain this group whose congruence subgroup Γ0(N) is expanded with Fricke reflection $F(z)={\frac{1}{N{\bar{z}}}}$. Then, we research and calculate the structure of signature and fundamental domain of this group. And then, we calculate the number of boundary components in the signature for this group. Finally, we find the 2, 3, ∞ valued link periods of these boundary components with the H. Jaffee technique.

Consideration on the Creation of Construction Cost by Calculating the Quantity at the Planning Design Stage - Focusing on Construction Cost Management Vases and Work Methods - (초기 설계단계에서 개산 견적의 수량산출에 의한 건축공사비 작성에 대한 고찰 - 공사비 관리 사례 및 작업 방법을 중심으로 -)

  • Hyun, Dong-Myung;Jeon, SangHoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.329-330
    • /
    • 2021
  • The calculation of the correct construction value in the construction should be investigated after the quantity is calculated. In order to calculate the quantity requires a lot of cost and time, and the initial accurate quantity calculation is not possible. Therefore, in the planning step in order to successfully complete the project to demonstrate the practicality of the difference between the construction cost by the construction design by presenting a method for calculate the quantity through the estimate with the construction open, floor plan, surface view, section.

  • PDF

Analysis of Construction Cost Weight Standards to Calculate Appropriate Construction Costs (적정공사비 산정을 위한 공사비할증기준 분석)

  • Oh, Jae-Hoon;An, Bang-Yul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.157-158
    • /
    • 2020
  • In order to calculate construction costs properly, it is necessary to add the weight that reflects different worksite conditions. The implementation of the weight, however, is difficult because it is impossible to determine whether wight should be added in basic work or whether weight values are overlapped. Special worksite conditions further complicate the matter. Furthermore, overlapping implementation of weight values result in overestimation of construction costs. The current study clearly analyzed the weight value items in the current construction cost calculation standards, and analyzed the weight value items included under the basic productivity category to propose an improvement of weight standards. Basically, the estimating standards provide 140 weight value items, with different levels of weight given to each item. Among 1,333 items in the estimating standards, 140 include weight values. Some items have two types of weight values.

  • PDF

A Mathematical Model for Calculating the Capacity in Terminal Control Areas (접근관제구역 수용량 산정을 위한 수리적 모형)

  • JongMok Chae;Hojong Baik;Jang Ryong Lee;Janghoon Park
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.4
    • /
    • pp.7-18
    • /
    • 2023
  • The continuous increase in air traffic emphasizes the importance of capacity calculation. Research on the calculation method of Terminal Control Area (TMA) capacity has been treated as a partial aspect of the airspace sector capacity or has been limitedly studied. This study aims to propose a mathematical model for calculating TMA capacity, taking into account the Standard Terminal Arrival Route (STAR), separation standards, TMA entry speed, and runway threshold passing speed. The proposed model has the advantage of being able to calculate the instantaneous arrival capacity, which has not been noted in previous studies, along with the throughput. Additionally, it is meaningful as the model can easily calculate the arrival capacity of the TMA considering airport construction, runway expansion, or new procedures.