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In a recent paper1 we reported equilibrium (EMD) and non-equilibrium (NEMD) molecular dynamics simulations 

of liquid argon using the Green-Kubo relations and NEMD algorithms to calculate the thermal transport coefficients- 

the self-diffusion coefficient, shear viscosity, and thermal conductivity. The overall agreement with experimental data 

is quite 잉ood. In this paper the same technique is applied to calculate the thermal transport coefficients of liquid 

water at 298.15 K and 1 atm using TIP4P model for the interaction between water molecules. The EMD results 

show difficulty to apply the Green-Kubo relations since the time-correlation functions of liquid water are oscillating 

and not decaying rapidly enough except the velocity auto-correlation function. The NEMD results are found to be 

within approximately ± 30~40% error bars, which makes it possible to apply the NEMD technique to other molecular 

liquids.

Introduction

In recent years, the non-equilibrium molecular dynamics 

(NEMD) simulations have emerged as a powerful tool for 

the study of thermal transport coefficients - self-diffusion co­

efficient, shear and bulk viscosities, and thermal conductivity- 

of both simple and molecular fluids. Recent development in­

clude the sllod algorithm2,3 for shear viscosity, the color cur­

rent technique4 for self-diffusion coefficient, the Evans algo­

rithm5,6 for thermal conductivity, and the use of Gauss's prin­

ciple4,7 of least constraint for isokinetic and/or isobaric ense­

mble simulations. More recently a homogeneous NEMD si­

mulation8 to investigate the nature of liquid surfur under 

extreme shear using the potential model developed by Stil- 

linger and Weber9 which involves three-body interaction is 

reported. Furthermore the principle of the color current al­

gorithm is applied to non-equilibrium Brownian dynamics 

(NEBD) simulations,10 in which the non-equilibrium state is 

achived by including a constant electric field in the Smolu- 

chowski dynamics, to calculate the self-diffusion coefficients 

of the ions in a model e!ectr이yte solutions.

In a recent paper1 we reported equilibrium molecular dy­

namics (Green-Kubo relations11) and non-equilibrium mole­

cular dynamics simulations of liquid argon at 94.4 K and 

1 atm to determine the thermal transport coefficients. The 

overall agreement of the EMD and NEMD results is quite 

good in comparison with experimental data. This means that 

the Green-Kubo r이ations and the NEMD algorithms are re­
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liable for the calculation of the thermal transport coefficients 

of simple liqiHd which is modeled by the usual Lennard-Jo- 

nes potential. Here we report a continuation of the earlier 

work on equlibrium and non-equilibrium molecular dynamics 

applied to determine the thermal transport coefficients of 

liquid water at 298.15 K and 1 atm. This research is motivat­

ed by the need to test the validity of the NEMD and EMD 

(Green-Kubo relations) techniques in calculation of the ther­

mal transport coefficients of a molecular liquid. Th은 chosen 

model potential for liquid water is the TIP4P potential which 

is described in Sec. III. (4).

The outline of the paper is as follow: In Sec. II the Gieen- 

Kubo relations, relations between time correlation functions 

and thermal transport coefficients, are introduced. In Sec. 

Ill the NEMD algorithm and equation of motions, in이uding 

Gauss's principle of least constraint for constant translational 

and rotational temperatures, are briefly described. The 

NEMD results for the thermal transport coefficients of liquid 

water are compared with those obtained from the EMD si­

mulations and experimental data in Sec. IV. Finally in Sec. 

V concluding remarks are presented.

Time-Correlation Function and 
Green-Kubo Relations

Correlations between two different quantities A and B are 

measured in the usual statistical sense, by means of the 

correlation coefficient Cab

Cab - <M8B)/o(A)o(B) (1)

where o2 (A)= <8A2> = (A2) - <A>2 and &4=A-<A〉with the 

notation of ensemble average, Schwartz inequalities 

guarantee that the absolute value of Cab lies between 0 

and 1, with values close to 1 indicating a high degree of 

correlation. The idea of the correlation coefficient may be 

extended in a very useful way, by considering A and B to 

be evaluated at two different times. The resulting quantity 

is a function of the time difference t: it is a * time-correlation 

functrion* Cab (t). For identical functions, Caa (t) is called 

an autocorrelation function and its time integral (from £=0 

to Z—oo) is a correlation time q. These functions are of 

great interest in computer simulation: (a) they give a clear 

picture of the dynamics in a fluid; (b) their time integrals 

ta may be related directly to macroscopic transport coeffici­

ents (Green-Kubo relations); (c) their Fourier transforms 

Caa(a>)may often be related to experimental spectra. The 

non-normalized correlation function is defined

gm)=〈&也)陋(0)〉=<M[ra)]6BLr(o)]) (2)

where we use the abbreviation r for a particular point in 

phase space, so that

GM)=CM)/戒4)o0) (3)

or

Caa (t)=Caa^CA)=財”)/(為(0) (4)

Just like〈&4&B〉，Cab (0 is different for different ensembles. 

The computation of CM) may be thought of as a two-stage 

process. First, we must select initial state points r(0), accor­

ding to the desired distribution 爲(「)，over which we will 

subsequently average. Second, we must evaluate r(0- This 

means solving the true (Newtonian) equations of motion. By 

this means, time-dependent properties may be calculated in 

any ensemble. In practice, the mechanical equations of mo­

tion are almost always used for both purpose, i.e. we use 

molecular dynamics to calculate time-correlation functions 

in the canonical ensemble.

Transport coefficients are defined in terms of the response 

of a system to a pertubation. For example, the diffusion coef­

ficient relates the particle flux to a concentration gradient, 

while the shear viscosity is a measure of the shear stress 

induced by an applied velocity gradient. By introducing such 

pertubations in to the Hamiltonian, or directly into the equa­

tions of motion, their effect on the distribution function fens 

may be calculated. Generally a time-dependent non-equili­

brium distribution /G)=/>s+研f) is produced. Hence, any 

non-equilibrium ensemble average (in particular, the desired 

response) may be calculated. By retaining the linear terms 

in the pertubation, and comparing the equation for the res­

ponse with a macroscopic transport equation, we may identify 

the transport coefficient. This is usually the infinite time 

integral of an equilibrium time-correlation function of the 

form

p=p dt<A«)A(o)) (4)

where g is the transport coefficient and 厶 is a variable ap­

pearing in the pertubation term in the Hamiltonian. Associat­

ed with any expression of this kind, there is also an Ein­

stein relation'

2^P-<L4(O-^(O)]2> (5)

which holds at large t (compared with the correlation time 

of A). The connection between Eqs. (4) and (5) may easily 

be established by integration by parts. Note that only a few 

genuine transport coefficients exist, i.e., for only a few 4hy­

drodynamic, variables A do Eqs. (4) and (5) give a non-zero 

P-

The self-diffusion coefficient Ds is given (in three dimen­

sions) by

「dt〈0,(t) •〃,(())〉 (6)

o J 0

where 心)is the center-of-mass velocity of a single mole­

cule. The corresponding Einstein relation, valid at long times, 

is

2皿 = 4-시 展)—7,(0) |2〉 (7)

where 成)is the molecular position. In practice, these avera­

ges would be computed for each of the N particles in the 

simulation, the results added together, and divided by N, 

to improve statistical accuracy.

The shear viscosity r\ is given by

n= dt〈&(fR(O)〉 (8)
Kl J 0

or

V
2 5= •詩〈林)一")了〉 (9)

R1

where
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Pxy= ¥ [S 林"，3, + Y/ixfiy] (10)

is an off-diagonal ("y) element of the pressure tensor and

Qxy= (11)

The negative of 7%, is often called the stress tensor. These quan­

tities are multi-particle properties, properties of the system as 

a whole, and so no additional averaging over the N particles 

is possible. Consequently t| is subject to much greater statistical 

imprecision than Ds.

The thermal conductivity 人 can be written as

V 「8
x=-^j 出</@(以3(0)〉 (12)

or

21 X=糸〈[S忠)一 &(0)了〉 (13)

where Jqx is a component of the energy current

儿=点空 E而+ 芟¥每0•耳)] (14)

which is the time derivative of

&=詩件也—£) (15)

The term &诲 makes no contribution if 必=0, as is the 

case in a normal one-component molecular dynamics simula­

tion. In calculating the energy of each molecule Eit the po­

tential energy of two molecules (assuming pairwise poten­

tials) is taken to be divided equally between them:

E,= -쁴一+§ZZ W (16)

厶 厶t j

Eqs. (6), (8), and (12) are the so-called Green-Kubo rea- 

tions for the self-diffusion coefficient, shear viscosity, and 

thermal conductivity, respectively.

Nonequilbrium Molecular Dynamics

The Color Current Technique for Self-diffusion 
Coefficient. Consider the perturbating color field F(f) at 

time 0 applied to the Hamiltonian Ho with color charges Ci:

H=H°+Z",*,F(t), t>0 (17)
I

For simplicity c, is given by (-1)1 for an even number of 

particles N. The response of the color current density J to 

the applied color field F(t) is

人=*切& (18)

The linear response theory12,13 predicts that in the linear 

small field limit,

lim <JX (0> = 一 J。ds x(t—s) F(s) (19)

where the susceptibility, x, is

XO)= 그-0。)人(0)〉 (20) 

Using Eq. (18) for Jx(0) and Jx(t), Eq. (20) can'be written 

in terms of the velocity auto-correlation function in the 

Green-Kubo equatuion, Eq. (6): 

. —*
x(t)=面 〈妇(0 Vxi(0)> (21)

[Jy — 1) VrL

The required equation can be easily obtained from Eqs. (6) 

and (21)：

n (N-i)VkT .. r.. <Z(0> I g

To calculate the self-diffusion coefficient Ds, we apply a con- 

dtant color field F, calculate the steady state color current 

J, and use the above equation.

The equations of translational motion for the center of 

mass are given by

ri =pi/m (23)

pxi =L atpxi (24a)

pyi=Fyi-a^yi (24b)

pzi=F2i~dtpzi (24c)

where the external field is applied to only the x-direction 

and a* as a parameter from the translational temperatue con­

straint. The derivation of the terms containing c* in the 

equations of motion is obtained using Gauss's principle of 

least contraint.4,7 The constant translational temperature con­

straint requires that

为* £ M = 외쁘 (25)

囱i仁！ 2

The parameter can be identified explicitly by multiplying 

the equations of motion (24) by p^, & and pa and summing 

over all particles

으[击 0 卅 ]= 瑟 E= 읍 ~쁭二

=o=Z2 小+卩2 Cipxi 一叫 23 -pi 
I 1 I

Thus the parameter (자 is function of time which depend 

upon the particle colours, velocities, and forces.

8늬2所顼+卩2： Cipxi ]/ 'pi (26)
1 I I

The equations of rotational motion about the center of mass 

for molecular fluids are derived using quaternions follows14,15

m丄 (27)

Lpi =& Li (28)

風=%/h, k=x, yt z (29)

■希1 ■ ~一如 一啊 Qi2 q疽

初2 

如

_丄
~~2

04

们1

一。3

如

31

们4

Qi2

们3 (况Z
(30)

-初4 - ■ 一如 们1 一们3 - _ 0 .

where L, is the angular momentum of molecule i and Ti 

is the torque on molecule i in the laboratory frame, and 

a/- are, respectively, the angular momentum and angular ve­

locities of molecule i in its principal axis frame, Aj is the 
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rotation matrix which transforms vectors from the laboratory 

to principal axis frame of molecule i, Ik is the principal axis 

moment of inertia of each molecule, and the 啊，0 = 1, 2, 

3, 4 are the quaternion parameters related to the Euler 

angles describing the orientation of molecule i in space. By 

the similar derivation for the constant translational tempera­

ture constraint parameter with the constant rotational con­

straint

1 vv t (>2 — 3NkT sr、万祥加n- (31)

the parameter % is given by

『爲成Ejggk燃 (32)

The Sllod Algorithm for Shear Viscosity. Among

many NEMD methods developed for calculating the shear

viscosity the most efficient technique appears to be the sllod 

algorithm,2,3 a standard method using homogeneous Lees-Ed­

wards * sliding brick* boundary conditions.16 This algorithm 

sets up a steady state planar Couette flow with the two plates 

moving in opposite x directions located at j — ± oo so that 

the streaming velocity has a non-zero component in the x 

direction dux/dy—y where y is the constant strain rate.

The linear response theory12,13 may be applied to the equa­

tion of motion in the linear small strain rate y,

〈R0〉= — lim fds Za-s) y(s) (33)

fo "

where P邛 is given by Eq. (10) and

X(0= -詩〈P"(t) P"(0)〉 (34)

is the susceptibility. Taking the integration over time t in 

Eq. (34), x(0 becomes equal to the integrand of the Green- 

Kubo relation for the shear viscosity, Eq. (8). In the limit 

of tfq in Eq. (33) with a constant strain rate y (s), com­

bining with the integrated form of Eq. (34) the shear visco­

sity can be given by

i]= 1시 lim 사海” ] (35)

f L f 丫 」

Following Evans and Morriss,2,3 the equations of transla­

tional motion for the center of mass in a molecular fluid 

are given by:

Xi =pxi/m (36a)

yi ~pyi/m (36b)

Zi =pzi/m (36c)

pxi =Fxi -pxi Y - Em (37a)

爲=7命一 cU项 (37b)

爲=玲一时林 (37c)

The constant translational temperature constraint parameter 

at can be derived in the same process for Eq. (26) under 

the same requirement, Eq. (25),

(가=Z [(pi'Fi-pipi: Vw)]/ £快 (38)
I t

The equations of rotational motion about the center of mass 

for molecular fluids and the constant rotational temperature 

constraint parameter are given as the same equations, Eq. (27)- 

(32), as in Sec. HI. (1).

The Evans Algorithm for Thermal Conductivity.
One of the most difficult thermal transport coefficients to 

calculate has proven to be the thermal conductivity. The 

most efficient presently known algorithm is developed by 

Evans.5,6 This technique is synthetic in that a fictitious vector 

field replaces a temperature gradient as the force driving 

a heat flux and is homogeneous, unlike real heat flow, with 

no temperature or density gradients being present.

In the linear small external field Fz, the ensemble average 

of corresponding thermodynamic heat flux at time t is given 

by

</qzU)〉= 一 lim [ ds 欢一s) Fz(s) (39) 

Fz-»0 丿 °

where the susceptibility, is

%(t)=詩<扇"(0)〉 (41)

R1

Integrating over time t in Eq. (39) and using Eq. (12), we 

obtain

入=-*J：dtx(t) (41)

Further using Eq. (31) in the limit of with constant 

E(s), the thermal conductivity is derived as

人 = ■* lim [ lim '스욤' 1 (42)

1 jd L fo rz 」

Consider the equations of motion for the center of mass: 

rt=pi/m (43)

*=F, + (E, —E)F(t)+・F(t)

一 2 玖 rjk *F(t) — OLtpi (44)
ZJN j,k

where and E are, respectively, the instantaneous energy 

of molecule i, Eq. (16), and the average energy of the system, 

the constant translational temperature constraint parameter, 

%, is

2 |2+(研—E)F(t)+ *£f科jFQ)-- — 酒a广」--------------- 七------------쓰卫---------L

X Pi令

(45)

and Fij is the force on particle i due to j. The equations 

of rotational motion and the parameter % are again given 

as the same in Sec. III. (1).

The Details of NEMD Simulation of TIP4P Water. 
The TIP4P potential for water is used because this potential 

is a quite reasonable model in comparison to diffraction data 

and thermodynamic aspects for simulations of liquid water 

at 298.15 K and 1 atm.17 The water molecule is assumed 

to be rigid and to interact through a Lennard-Jones potential 

between the oxygen atoms and Coulombic potentials between 

positive charges located at the hydrogen atoms and one ne­

gatively charged site on a point M located on the HOH bisec­

tor 0.15 A form the oxygen to the hydrogens. The general
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Figure 1. Normalized velocity auto-correlation function for water 

at 298.15 K and 1 atm. The arrow indicates the point at which 

the correlation is assumed to be zero.

Figure 2. Normalized pressure auto-correlation function for wa­

ter. The legend is the same as that of Figure 1.

form of intermolecular potential is given by

") = 7、(常 ) [ 峯 * / qli 决/，얘 )

+A(Y)T2 —C(Y 厂6] (46)

where

(1, r<rt

T饥=< 1 - (rc-r()3(r-r/)2(3rc~r~2r), rt<r<rc (47) 
I 0, r»c

is the switch function for smoothly ending potential fucntion 

to zero, r>=0.95 rc, and rc is the cutoff radius and is chosen 

to be 8.5 A, and where * is the charge on site k of molecule 

i in units of e,浩 is the distance between the centers of 

the oxygen atoms in two molecules, and 场 the distance be­

tween site k of m이ecule i and site I of molecule j. The 

Lennard-Jones parameters are A = 600,000 kcal A12/mol and 

C=610 kcal A6/moL Two positive charges of 0.52 e are on 

the hydrogens and the negative charge of —1.04 e on the 

M site. The OH bond length (0.9752 A) and HOH angle (104. 

52°) are fixed at the experimental values for the water mo­

nomer.18 The preliminary NVT MD simulation of 216 water 

m이ecules was started in the cubic box of length L = 18.645 

A of which the density is equal to 0.9969 g/cm3 at 298.15° 

K and 1 atm. The equations of motion are solved using a 

fifth-order predictor-corrector Gear integration19 with a time 

step of 2X10-15 second.

Results and Discussion

The velocity, pressure, and heat flux auto-correlation func­

tions obtained from the EMD simulations are drawn in Fi­

gures 1-3. The curve in Figure 1 is averaged over 700 sets 

of individual curves and the curves in Figures 2 and 3 are 

over 1700 sets as in our previous study.1 The thermal trans­

port coefficients, of water at 298.15 K and 1 atm, calculated 

by integrating these correlation functions over £=0 to t=1.5

Figure 3. Normalized heat flux auto-correlation function for wa­

ter. The legend is the same as that of Figure 1.

ps using Simpson's rule20 are given in column (1) of Table

1. The calculated self-diffusion coefficient is in good agree­

ment with Neumann's TIP4P water simualtion result21 (2.8 X 

10-5 cm2/sec at 293 K) and another TIP4P result22 (2.95X 10-5 

cm2/sec at 298 K). But the comparison of the calculated 

shear viscosity and thermal conductivity with experimental 

results given in column (3) of Table 1 shows very poor agree­

ments.

The failure of Green-Kubo relations for the shear viscosity 

and thermal conductivity of liquid water is rather difficult 

to be explained. The upper integration limit /=<» in Eqs. 

(6), (8), and (12) cam be replaced by a finite value when 

the correlation between x(0) and x(t) becomes zero where 

x—vst Pxyt and 辰 For the well-behaved curve, as shown 

in Figure 1, which is not oscillating and decaying rapidly, 

the time point of zero correlation is easily determined. But
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Table 1. Comparison of The Results Obtained from The Green- 

Kubo Relations for The Thermal Coefficients of Liquid Water 

at 298.15 K and 1 간m other MD and NEMD Simulation Results 

and Experimental Results

Transport 
properties

Gerrn-Kubo Experimental 
results 

(3)

Other MD and 
NEMD results 

(4)(1) (2)

S이 f-diffusion 2.8a
coefficients 3.10 3.24 — (293 K)

(10-5cm2/sce) 2.9盾
Viscosity 0.0752 0.874 0.8904c 0.428d

(cp) (298.15 K) (303.15 K)
Thermal

conductivity 0.713 3.87 6.09歩 一

(milli • watt/cm • K) (300 K)

“Ref. 21,力Ref. 22, cRef. 29, "Ref. 28, fRef. 30.

in the other case, as shown in Figures 2 and 3, it is difficult 

to determine those time points. Plausible points of zero cor­

relation are determined roughly and indicated as arrows in 

Figures 1-3 and the results of the integration over zero to 

these points are given in column (2) of Table 1. The agree­

ments with the experimental data are much better than those 

of column (1). In Figure 1, the correlation after the arrow 

point is very small but there is still a recognizable difference 

of the self-diffusion coefficients between c이umn (1) and (2) 

which may mean the need of more runs to be averaged. 

On the other hand, the correlations after the arrow points 

in Figures 2 and 3 show big fluctuation which reflects huge 

differences of the shear viscosities and thermal conductivities 

between column (1) and (2).

From the above discussion, the failure of Green-Kubo re­

lations for the shear viscosity and thermal conductivity of 

liquid water is closely related to the failure of obtaining well- 

behaved pressure and heat flux auto-correlation functions 

of liquid water. We may analyze this problem in two ways: 

the comparison of the auto-correlation functions of liquid 

water with those of liquid argon which is modeled by a sim­

ple Lennard-Jones potential and the exception for the velo­

city auto-correlation function of liquid water.

First of all, we may interprete the non-decaying correlation 

of pressure and heat flux of liquid water as due to the com­

plexity of the model potential (TIP4P) which is characterized 

by the Coulomb potentials between charges on water mole­

cules. But it is difficult to understand how the potential affe­

cts the equations of pressure tensor and heat flux 応, 

Eqs. (10) and (14). In order to clarify this effect we may 

run a computer simulation with much bigger capacity to re­

cord all the correlation of each water molecule over long 

times for the purpose of later analysis. It is possible that 

sufficient runs of simulations and more statistical precision 

in averaging of the correlation curves overcomes this pro­

blem. Another possibility is the size of simulation box. If 

one wishes to calculate a time-correlation function over a 

time span t, then one must ensure that the system simulated 

is sufficiently large for a sound wave not to be able to trave­

rse the system in a time less than 匕23
The velocity auto-correlation functions of both liqud argon1

5
3 枳흐

누
%

。 5
 

5

°

-2

U
W
P

，E
S

-5・5
0.0 1.0 2.0 3.0 4.0 5.0

External Field
Figure 4. NEMD sim니ation results for self-diffusion coefficient, 

in the unit of 10-6 cm2/sec, of water at 298.15 K and 1 atm 

as a function of external fi이d (g • nm/m이e • ps2). The circle at 

zero external field is obtained least squares fit of the results 

to a straight line and ■ is the EMD result. The error bars indi­

cate the standard deviation.

0.0H-------1------ 1------ 1-------1------
0.0 0.2 0.4 0.6 0.8 1.0

Strain Rated/ps)
Figure 5. NEMD simulation results for shear viscosity, in the 

un辻 of cp, of water at 298.15 K and 1 atm as a function of 

strain rate (ps-1)* The white circle at zero external fi이d is ob­

tained by Lagrange extrapolation24 and the black circle indicates 

an experimental result. □ and ■ represent, respectively, the 

NEMD result for shear viscosity of water by Cummings and 

Varner28 and an experimental result at 303.15 K and 1 atm. The 

error bars indicate the standrd deviation.

and liquid water show well-behaved smooth curves in con­

trast to the pressure and heat flux auto-correlation functions 

of liquid water. The first possibility to explain this result 

may be due to the property of the center-of-mass velocity 

of molecule. Since the forces on atoms in each molecule 

is directly calculated from the model potential, but the force 

on the center-of-mass is calculated by summing of the forces 

on atoms and the center-of-mass velocity is calculated by
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Figure 6. NEMD simulation remits for thermal conductivity, 

in the unit of milli • watt/cm • K, of water at 298.15 K and 1 

atm as a function of external field (nm^1). The white circle at 

zero external field is obtained by Lagrange extrapolation24 and 

the black circle indicates an experimental result at 300 K and 

1 atm. The error bars indicate the standard deviation.

Table 2. NEMD simulation remits for the self-diffusion coeffi­

cient (Ds), shear viscosity G]), and thermal conductivity (人)of 

liquid water at 298.15 K and 1 atm. Ds at zero external field 

is obtained by least squares fit of the results to a straight line, 

and T] and X are obtained by Lagrange extrapolation at zero 

external field24

External field 

(g-nm/mole-ps2)
5.0 4.0 3.0 2.0 1.0 0.0

Self-diffusion 3.46 3.57 3.59 3.16 3.14

coefficients + ± + 士 ± 3.07

(10 & cm2/sec) 12.2 13.4 20.5 28.8 57.8

Strain rate(ps-1) 1.0 0.8 0.6 0.4 0.2 0.0

Shear viscosity 0.592 0.663 0.752 0.922 1.141

(cp) ± ± ± ± ± 1.277

0.156 0.202 0.269 0.427 0.827

External

fi이d (nm-1)
5.0 4.0 3.0 2.0 1.0 0.5 0.0

Thermal 3.04 3.16 3.31 3.39 3.57 3.87

conductivity ± 、士 4- + + + 4.47

(milli • watt/cm • K) 0.417 0.510 0.750 0.941 1.78 3.52

time integration of the force, the velocity auto-correlation 

function of liquid water may not be related to the complexity 

of model potential as discussed in the above paragraph. Ra­

ther the rotational velocity auto-correlation function liquid 

water may show a bad-behaved curve. The second is that 

the average〈…〉in Eq. (6) would be computed for each 

of the N (=216) molecules in the simulation and this gives 

a greater statistical precision to the averaged velocity auto­

correlation function.

The results of non-equilibrium molecular dynamics 

(NEMD) simulations for the self-diffusion coefficient, shear 

viscosity, and thermal conductivity of water at 298.15°K and 

1 atm shown in Figures 4-6 and in Table 2. Each NEMD 

simulation result is averaged over 20,000 time steps after 

simulation runs of 20,000 time steps to reach a steady state. 

The self-diffusion coefficient at zero external field is obtained 

by least squares fit of the non-zero external field results 

to a straight line, and the shear viscosity and the thermal 

conductivity are obtained by Lagrange extrapolation24 at zero 

external field.

Figure 4 shows the self-diffusion coefficients as a function 

of external field. The final result at zero external field shows 

a good agreement with that from obtained from the EMD 

(Green-Kubo relation) result. Unfortunately there is no expe­

rimental data for the self-diffusion coefficient of liquid water. 

In this study for the calculation of self-diffusion coefficient, 

we employed Hamiltonian algorithm (Sec. III. (1)) only. Evans 

and coworkers4 used Gaussian algorithm in addition to this 

method and reported that these two non-equilibrium me­

thods are self-consistent within the statistical uncertainities.

Figure 5 shows the NEMD result for shear viscosity of 

water. It appears that as the strain rate is decreased the 

shear viscosity increases but it does not seem that the shear 

viscosity shows the square-root behaviour, as Cummings and 

Varner expected in their NEMD results.25-28 Comparing with 

the experimental value (•), the zero strain rate extrapolated 

shear viscosity is overestimated by 43%. Other NEMD and 

experimental result28 at 303.15 K and 1 atm are also shown 

in the figure.

In Figure 6 we show the NEMD result for the thermal 

conductivity of liquid water. As the external field decreases 

the thermal conductivity is increased very slowly and beco­

mes steep near zero external field. But it is reported that 

for the thermal conducitivity of a Lennard-Jones fluid at the 

triple point is decreased almost linearly with decreasing ex­

ternal field.5 The zero external field extrapolated thermal 

conductivity is underestimated by 27% compared to the ex­

perimental result at 300 K and 1 atm (•).

Concluding Remarks

In this study, we purpose to develope the non-equilibrium 

molecular dynamics (NEMD) technique to determine the 

thermal transport coefficients of liquid water at 298.15°K 

and 1 atm, by using a well-developed potential model for 

the interactions between the water molecules at the micro­

scopic level. The results obtained from the equilibrium mole­

cular dynamics simulations of TIP4P water model imply the 

failure of obtaining well-behaved time-correlation functions 

except the velocity auto-correlation function. The reason for 

the failure is not clear from the present study. On the other 

hand, the results of the NEMD simulations of the same model 

give an agreement with experimental data within approxima­

tely 30~40% errors. Even though the uncertainity is rather 

not negligible, based on this work we may conclude that 

application of NEMD technique to other dense liquids is 

promised with well-developed model potentials. In this sense 

the present study may be considered as a first step towards 
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the determination of thermal transport coefficients of various 

aqueous solutions. Further study should assess the analysis 

of bad-behaved time-correlation functions of molecular liquids.
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Characterization of Spherical Particles by Light Scattering

Sangwook Park, Jungmoon Sung, and Taihyun Chang*

Department of Chemistry, POSTECH, Pohang 790-600

Division of Organic Materials, RIST, Pohang 790-600. Received January 30, 1991

We have studied a characterization method of accurate size of spherical particles by fitting experimental light scattering 

profile to the rigorous theoretical scattering function. An efficient software has been developed for computation of 

the theoretical scattering function and regression analysis. A light scattering instrument has been built and the neces­

sary data acquisition and analysis are carried out by use of a personal computer with an emphasis on the reduction 

of analysis and time aiming that this study will be extended toward a dev은lopment of a practical particle sizing 

apparatus. The performance of the instrument and the software has been evaluated with latex spheres and found 

to be satisfactory.

Introduction

Particles exist in various forms, solid (powder), liquid (sus­

pension or emulsion), gas (aerosol), and play an indispens­

able role in a number of important industrial processes. They 

exhibit unique properties due to their high surface area to


