DOI QR코드

DOI QR Code

SIGNATURAL APPLICATIONS OF THE FRICKE GROUP ΓF (N)

  • Received : 2022.04.06
  • Accepted : 2022.05.11
  • Published : 2022.06.25

Abstract

In this paper, we establish the Fricke Group ΓF (N) which is a new special group of Non-Euclidean Crystallograhic (NEC) group. We obtain this group whose congruence subgroup Γ0(N) is expanded with Fricke reflection $F(z)={\frac{1}{N{\bar{z}}}}$. Then, we research and calculate the structure of signature and fundamental domain of this group. And then, we calculate the number of boundary components in the signature for this group. Finally, we find the 2, 3, ∞ valued link periods of these boundary components with the H. Jaffee technique.

Keywords

References

  1. M. Akbas, The Normalizer of Modular Subgroup, Ph. D. Thesis, Faculty of Mathematical Studies, University of Southampton, Southampton, U.K., 1989.
  2. M. Akbas and T. Baskan, Suborbital graphs for the normalizer of Γ0(N), Turkish J. Math. 20 (1996), 379-387.
  3. A. Buyukkaragoz, Signatures and graph connections of some subgroups of extended modular group, Ph. D. Thesis, Science Institute, Ordu University, Ordu, Turkey, 2019.
  4. M. Erdogan and G. Yilmaz, Pure Algebra and Numbers Theory, Beykent University Press, No. 47, Istanbul, Turkey, 2008.
  5. R. Fricke and F. Klein, Vorlesungen uber die Theorie der automorphen Funktionen 2, Bde. Leibzig: Teubner, 1926.
  6. H. Jaffee, Degeneration of real elliptic curves, J. London Math. Soc. 2 (1978), 19-27. https://doi.org/10.1112/jlms/s2-17.1.19
  7. H. Poincare, Theorie des groupes fuchsiens, Acta Mathematica 1 (1882), 1-61. https://doi.org/10.1007/BF02592124
  8. J. S. Rose, A Course on Group Theory, Cambridge Univ. Press, U.K., 1978.
  9. B. Schoeneberg, Elliptic Modular Functions, Springer Verlag, Berlin, 1974.
  10. D. Singerman, Universal tessellations, Revista Matematica 1 (1988), 111-123.
  11. H. C. Wilkie, On non-Euclidean crystallograhic groups, Math. Zeitschr. 91 (1966), 87-102. https://doi.org/10.1007/BF01110157