• Title/Summary/Keyword: CMOS LNA

Search Result 129, Processing Time 0.029 seconds

Size-Efficient 3 GHz CMOS LNA (회로면적에 효율적인 3 GHz CMOS LNA설계)

  • Jhon, Hee-Sauk;Yoon, Yeo-Nam;Song, Ick-Hyun;Shin, Hyung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.10
    • /
    • pp.33-37
    • /
    • 2007
  • This paper presents the implementation technique to reduce circuit area occupation in designing Low Noise Amplifier (LNA) using vertical shunt symmetric inductor. We applied a vertical shunt symmetric inductor to match the input and output in 3 GHz CMOS LNA to reduce the circuit area. This size efficient amplifier has been designed in a $0.18\;{\mu}m$ digital logic CMOS process. In this paper, the case of conventional asymmetric inductor, and vertical shunt symmetrical inductor with a relatively higher number of turns have been compared in order to efficient a size efficient CMOS LNA design method while still retaining the circuit operation characteristics.

Noise Analysis of Common Source CMOS Pair for Dual-Band LNA (이중밴드 저잡음 증폭기 설계를 위한 공통 소스 접지형 CMOS 쌍의 잡음해석)

  • 조민수;김태성;김병성
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.2
    • /
    • pp.140-144
    • /
    • 2004
  • The selectable dual band LNA usually uses common source transistor pair each input of which is selectively driven at a different frequency in a series resonant form. This paper analyzes the degradation in noise figures of the MOSFET common source pair with series resonance when it is driven concurrently at both inputs with different frequencies as a concurrent dual band LNA. Results of analysis will be compared with the measured noise figures of CMOS LNA with double inputs fabricated in 0.18 $\mu\textrm{m}$ CMOS process. Additionally, analyzing the contributions of FET channel noise and source noise from the LNA operating in the other band, this paper proposes optimum matching topology which minimizes the added noises for concurrent operation.

Design of Low Power CMOS LNA for using Current Reuse Technique (전류 재사용 기법을 이용한 저전력 CMOS LNA 설계)

  • Cho In-Shin;Yeom Kee-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1465-1470
    • /
    • 2006
  • This paper presents a design of low power CMOS LNA(Low Noise Amplifier) for 2.4 GHz ZigBee applications that is a promising international standard for short area wireless communications. The proposed circuit has been designed using TSMC $0.18{\mu}m$ CMOS process technology and two stage cascade topology by current reuse technique. Two stage cascade amplifiers use the same bias current in the current reused stage which leads to the reduction of the power dissipation. LNA design procedures and the simulation results using ADS(Advanced Design System) are presented in this paper. Simulation results show that the LNA has a extremely low power dissipation of 1.38mW with a supply voltage of 1.0V. This is the lowest value among LNAs ever reported. The LNA also has a maximum gain of 13.38dB, input return loss of -20.37dB, output return loss of -22.48dB and minimum noise figure of 1.13dB.

A Design on UWB LNA for Using $0.18{\mu}m$ CMOS ($0.18{\mu}m$ CMOS공정을 이용한UWB LNA)

  • Hwang, In-Yong;Jung, Ha-Yong;Park, Chan-Hyeong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.567-568
    • /
    • 2008
  • In this paper, we proposed the design on LNA for $3{\sim}5\;GHz$ frequency with Using $0.18{\mu}m$CMOS technology. The LNA gain is 12-15 dB, and noise figure is lower than 5 dB and Input/output matching is lower than 10 dB in frequency range from 3 GHz to 5 GHz. The topology, which common source output of cascode is reduced noise figure and improved gain. Input common gate amplifier extend LNA's bandwidth.

  • PDF

Design of Low Power CMOS LNA for 2.4 GHz ZigBee Applications (2.4 GHz ZigBee 응용을 위한 저전력 CMOS LNA 설계)

  • Cho In-Shin;Yeom Kee-Soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.259-262
    • /
    • 2006
  • This paper presents a design of low power CMOS LNA(Low Noise Amplifier) for 2.4 GHz ZigBee applications. The proposed circuit has been designed by using TSMC $0.18{\mu}m$ CMOS process and current-reused two-stage cascade topology. LNA design procedures and the simulation results using ADS(Advanced Design System) are presented in this paper. Simulation results shows that the LNA has a extremely low power dissipation of 1.38mW with a $V_{DD}$ of 1.0V. The LNA also has a maximum gain of 13.38dB, input return loss of -20.37dB, output return loss of -22.48dB and noise figure of 1.13dB.

  • PDF

A Design on LNA/Down-Mixer for MB-OFDM m Using 0.18 μm CMOS (CMOS를 이용한 MB-OFDM UWB용 LNA/Down-Mixer 설계)

  • Park Bong-Hyuk;Lee Seung-Sik;Kim Jae-Young;Choi Sang-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.2 s.93
    • /
    • pp.139-143
    • /
    • 2005
  • In this paper, we propose the design on LNA and Down-mixer for MB-OFDM UWB using $0.18\;{\mu}m$ CMOS. LNA, Down-mixer design result shows that it covers the frequency range ken 3 GHz to 5 GHz. The LNA gain is larger than 12.8 dB, and noise figure about 2.6 dB. Double balanced differential down-mixer is designed less than 2 dB gainflatness, and it has over 30 dB LO leakage, feedthrough characteristics.

Post-Linearization of Differential CMOS Low Noise Amplifier Using Cross-Coupled FETs

  • Kim, Tae-Sung;Kim, Seong-Kyun;Park, Jin-Sung;Kim, Byung-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.283-288
    • /
    • 2008
  • A post-linearization technique for the differrential CMOS LNA is presented. The proposed method uses an additional cross-coupled common-source FET pair to cancel out the third-order intermodulation ($IM_3$) current of the main differential amplifier. This technique is applied to enhance the linearity of CMOS LNA using $0.18-{\mu}m$ technology. The LNA achieved +10.2 dBm IIP3 with 13.7 dB gain and 1.68 dB NF at 2 GHz consuming 11.8 mA from a 1.8-V supply. It shows IIP3 improvement by 6.6 dB over the conventional cascode LNA without the linearizing circuit.

A High Linearity 900-MHz CMOS LNA for RFID (CMOS 공정을 이용한 높은 선형성을 갖는 900MHz RFID 용 LNA)

  • Song Jun;Cho Il-Hyun;Lee Moon-Que
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.205-207
    • /
    • 2006
  • In this paper, we present a design procedure of high linearity LNA using CMOS technology. To enhance the low linearity of the inherent CMOS transistor, we adopt the modified derivate superposition with adding external capacitor. The simulation of the designed LNA shows $IIP_3$ of +12-dBm, power gain of 13.8-dB, noise figure of 1.75-dB over the 900 MHz UHF RFID frequencies. The circuit draws the current of 4.2 mA from 1.8-V supply voltage.

  • PDF

A 0.13 ㎛ CMOS Dual Mode RF Front-end for Active and Passive Antenna (능·수동 듀얼(Dual) 모드 GPS 안테나를 위한 0.13㎛ CMOS 고주파 프론트-엔드(RF Front-end))

  • Jung, Cheun-Sik;Lee, Seung-Min;Kim, Young-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • The CMOS RF front-end for Global Positioning System(GPS)are implemented in 1P8M CMOS $0.13{\mu}m$ process. The LNAs consist of LNA1 with high gain and low NF, and LNA2 with low gain and high IIP3 for supporting operation with active and passive antenna. the measured performances of both LNAs are 16.4/13.8 dB gain, 1.4/1.68 dB NF, and -8/-4.4 dBm IIP3 with 3.2/2 mA form 1.2 V supply, respectively. The quadrature downconversion mixer is followed by transimpedance amplifier with gain controllability from 27.5 to 41 dB. The front-end performances in LNA1 mode are 39.8 dB conversion gain, 2.2 dB NF, and -33.4 dBm IIP3 with 6.6 mW power consumption.

  • PDF

A UHF CMOS Variable Gain LNA with Wideband Input Impedance Matching and GSM Interoperability

  • Woo, Doo Hyung;Nam, Ilku;Lee, Ockgoo;Im, Donggu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.4
    • /
    • pp.499-504
    • /
    • 2017
  • A UHF CMOS variable gain low-noise amplifier (LNA) is designed for mobile digital TV tuners. The proposed LNA adopts a feedback topology to cover a wide frequency range from 474 to 868 MHz, and it supports the notch filter function for the interoperability with the GSM terminal. In order to handle harmonic distortion by strong interferers, the gain of the proposed LNA is step-controlled while keeping almost the same input impedance. The proposed LNA is implemented in a $0.11{\mu}m$ CMOS process and consumes 6 mA at a 1.5 V supply voltage. In the measurement, it shows the power gain of greater than 16 dB, NF of less than 1.7 dB, and IIP3 of greater than -1.7 dBm for the UHF band.