DOI QR코드

DOI QR Code

Post-Linearization of Differential CMOS Low Noise Amplifier Using Cross-Coupled FETs

  • Published : 2008.12.30

Abstract

A post-linearization technique for the differrential CMOS LNA is presented. The proposed method uses an additional cross-coupled common-source FET pair to cancel out the third-order intermodulation ($IM_3$) current of the main differential amplifier. This technique is applied to enhance the linearity of CMOS LNA using $0.18-{\mu}m$ technology. The LNA achieved +10.2 dBm IIP3 with 13.7 dB gain and 1.68 dB NF at 2 GHz consuming 11.8 mA from a 1.8-V supply. It shows IIP3 improvement by 6.6 dB over the conventional cascode LNA without the linearizing circuit.

Keywords

References

  1. K. Lee, I. Nam, I. Kwon, J. Gil, K. Han, S. Park, and B.-I. Seo, "The impact of semiconductor technology scaling on CMOS RF and digital circuits for wireless application," IEEE Trans. Electron Devices, Vol. 52, No. 7, pp. 1415-1422, Jul. 2005 https://doi.org/10.1109/TED.2005.850632
  2. T.-W. Kim, B.-K. Kim, and K. Lee, "Highly linear receiver front-end adopting MOSFET transconductance linearization by multiple gated transistors," IEEE J. Solid-State Circuits, Vol. 39, No. 1, pp. 223-229, Jan. 2004 https://doi.org/10.1109/JSSC.2003.820843
  3. V. Aparin, and L. E. Larson, "Modified derivative superposition method for linearizing FET low-noise amplifiers," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 2, pp. 571-581, Feb. 2005 https://doi.org/10.1109/TMTT.2004.840635
  4. T.-W. Kim, and B.-K. Kim, "A 13-dB IIP3 Improved Low-Power CMOS RF Programmable Gain Amplifier Using Differential Circuit Transconductance Linearization for Various Terrestrial Mobile D-TV Applications," IEEE J. Solid-State Circuits, Vol. 41, No. 4, pp. 945-953, Apr. 2006 https://doi.org/10.1109/JSSC.2006.870744
  5. P. Andreani, and H. Sjoland, "Noise optimization of an inductively degenerated CMOS low noise amplifier," IEEE Trans. Circuits Syst., Vol. 48, No. 9, pp. 835-841, Sep. 2001 https://doi.org/10.1109/82.964996
  6. T.-K. Nguyen, N.-J. Oh, C.-Y. Cha, Y.-H. Oh, G.-J. Ihm, and S.-G. Lee, "CMOS Low-Noise Amplifier Design Optimization Techniques," IEEE Trans. Microw. Theory Tech., Vol. 52, No 5, pp. 1433-1442, May. 2004 https://doi.org/10.1109/TMTT.2004.827014
  7. T.-S. Kim, and B.-S. Kim, "Post-Linearization of Cascode CMOS Low Noise Amplifier Using Folded PMOS IMD Sinker," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 4, pp. 182-184, Apr. 2006 https://doi.org/10.1109/LMWC.2006.872131
  8. N. Kim, V. Aparin, K. Barnett, and C. Persico, "A Cellular-Band CDMA 0.25-${\mu}m$ CMOS LNA Linearized Using Active Post-Distortion," IEEE J. Solid-State Circuits, Vol. 41, No. 7, pp. 1530-1534, Jul. 2006 https://doi.org/10.1109/JSSC.2006.873909
  9. T.-S. Kim, and B.-S. Kim, "Linearization of Differential CMOS Low Noise Amplifier Using Cross- Coupled Post Distortion Canceller," IEEE RFIC Symp. Dig., pp.83-86, Jun. 2008
  10. V. Aparin, and C. Persico, "Effect of Out-of-Band Termination on Intermodulation Distortion in Common- Emitter Circuits," IEEE MTT-S Dig., Vol. 3, pp.977-980, Jun. 1999

Cited by

  1. A Common-Gate Amplifier With Transconductance Nonlinearity Cancellation and Its High-Frequency Analysis Using the Volterra Series vol.57, pp.6, 2009, https://doi.org/10.1109/TMTT.2009.2019998
  2. A 5.5-mW ${+}$9.4-dBm IIP3 1.8-dB NF CMOS LNA Employing Multiple Gated Transistors With Capacitance Desensitization vol.58, pp.10, 2010, https://doi.org/10.1109/TMTT.2010.2063790
  3. A 6.75 mW $+$ 12.45 dBm IIP3 1.76 dB NF 0.9 GHz CMOS LNA Employing Multiple Gated Transistors With Bulk-Bias Control vol.21, pp.11, 2011, https://doi.org/10.1109/LMWC.2011.2167503
  4. A CMOS RF Programmable-Gain Amplifier for Digital TV With a $+$9-dBm IIP3 Cross-Coupled Common-Gate LNA vol.59, pp.9, 2012, https://doi.org/10.1109/TCSII.2012.2206934
  5. A 0.7-dB NF, +8.2-dBm IIP3 CMOS low noise amplifier using frequency selective feedback vol.44, pp.1, 2015, https://doi.org/10.1002/cta.2059
  6. -factor RF spiral inductor using carbonyl-iron/epoxy composite magnetic core vol.11, pp.19314973, 2016, https://doi.org/10.1002/tee.22229
  7. Characterization of UHF Band LC Filter With RF Spiral Inductor Using Carbonyl-Iron Powder/Epoxy Composite Magnetic and Chip Capacitor vol.53, pp.11, 2017, https://doi.org/10.1109/TMAG.2017.2712642