• Title/Summary/Keyword: CMOS Analog to Digital Converter

Search Result 204, Processing Time 0.027 seconds

8bit 100MHz DAC design for high speed sampling (고속 샘플링 8Bit 100MHz DAC 설계)

  • Lee, Hun-Ki;Choi, Kyu-Hoon
    • 전자공학회논문지 IE
    • /
    • v.43 no.3
    • /
    • pp.6-12
    • /
    • 2006
  • This paper described an 8bit, 100Msample/s CMOS D/A converter using a glitch-time minimization technique for the high-speed sampling rate of 100MHz level. The proposed DAC was implemented in $0.35{\mu}m$ Hynix CMOS technology and adopts a current mode architecture to optimize sampling rate, resolution, chip area. The DAC linear characteristics was similar to the proposed specification and the prototype error between DNL and INL is less than $\pm$0.09LSB respectively. Also, the manufactured DAC chip was analyzed the cause of error operation and proposed the field considerations for chip test.

A Design of CMOS ADC for Video Interface (비디오 신호 인터페이스를 위한 CMOS ADC의 설계)

  • 안승헌;권오준;임진업;최중호
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.975-978
    • /
    • 2003
  • 본 논문에서는 비디오 신호 인터페이스를 위해 10비트 50MHz ADC 를 설계하였으며 DCL(digital-error correction logic)을 갖는 3-3-3-4 구조의 파이프라인 방식을 사용하였다. SHA(sample and hold amplifier)와 MDAC (multiplying digital-to-analog converter)에 쓰이는 증폭기는 높은 이득을 갖도록 gain-boosting 기법을 적용하였으며, 전력소모와 면적을 줄이기 위해 capacitor scaling 기법을 적용하였다. 본 ADC 는 0.35 μm double-poly four-metal n-well CMOS 공정으로 설계 및 제작하였으며, 전체 회로는 3.3V 단일 전원 전압에서 동작하도록 설계하였다. 측정 결과 5MHz 의 입력을 인가하였을 때 SNDR 은 56.7dB, 전체 전력 소모는 112mW 이며, 입출력 단의 패드를 포함한 전체 칩 면적은 2.6mm×2.6mm이다.

  • PDF

Design of a High-Resolution DCO Using a DAC (DAC를 이용한 고해상도 DCO 설계)

  • Seo, Hee-Teak;Park, Joon-Ho;Park, Jong-Tae;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1543-1551
    • /
    • 2011
  • Dithering scheme has been widely used to improve the resolution of DCO(Digitally Controlled Oscillator) in conventional ADPLLs(All Digital Phase Locked Loop). In this paper a new resolution improvement scheme is proposed where a simple DAC(Digital-to-Analog Converter) is employed to overcome the problems of dithering scheme. The frequencies are controled by varactors in coarse, fine, and DAC bank. The DAC bank consists of an inversion mode NMOS varactor. The other varactor banks consist of PMOS varactors. Each varactor bank is controlled by 8bit digital signal. The proposed DCO has been designed in a $0.13{\mu}m$ CMOS process. Measurement results shows that the designed DCO oscillates in 2.8GHz~3.5GHz and has a frequency tuning range of 660MHz and a resolution of 73Hz at 2.8GHz band. The designed DCO exhibits a phase noise of -119dBc/Hz at lMHz frequency offset. The DCO core consumes 4.2mA from l.2V supply. The chip area is $1.3mm{\times}1.3mm$ including pads.

A high-speed algorithmic ADC based on Maximum Circuit

  • Chaikla, Amphawan;Pukkalanun, Tattaya;Riewruja, Vanchai;Wangwiwattana, Chaleompun;Masuchun, Ruedee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.73-77
    • /
    • 2003
  • This paper presents a high-speed algorithmic analog-to-digital converter (ADC), which is based on gray coding. The realization method makes use of a two-input maximum circuit to provide a high-speed operation and a low-distortion in the transfer characteristic. The proposed ADC based on the CMOS integrated circuit technique is simple and suitable for implementing a highresolution ADC. The performances of the proposed circuit were studied using the PSPICE analog simulation program. The simulation-results verifying the circuit performances are agreed with the expected values.

  • PDF

A 3.3V-65MHz 12BIT CMOS current-mode digital to analog converter (3.3V-65MHz 12비트 CMOS 전류구동 D/A 변환기 설계)

  • 류기홍;윤광섭
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.518-521
    • /
    • 1998
  • This paper describes a 3.3V-65MHz 12BIT CMOS current-mode DAC designed with a 8 MSB current matirx stage and a 4 LSB binary weighting stage. The linearity errors caused by a voltage drop of the ground line and a threshold voltage mismatch of transistors have been reduced by the symmetrical routing method with ground line and the tree structure bias circuit, respectively. In order to realize a low glitch energy, a cascode current switch ahs been employed. The simulation results of the designed DAC show a coversion rate of 65MHz, a powr dissipation of 71.7mW, a DNL of .+-.0.2LSB and an INL of .+-.0.8LSB with a single powr supply of 3.3V for a CMOS 0.6.mu.m n-well technology.

  • PDF

A 12-b Asynchronous SAR Type ADC for Bio Signal Detection

  • Lim, Shin-Il;Kim, Jin Woo;Yoon, Kwang-Sub;Lee, Sangmin
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper describes a low power asynchronous successive approximation register (SAR) type 12b analog-to-digital converter (ADC) for biomedical applications in a 0.35 ${\mu}m$ CMOS technology. The digital-to-analog converter (DAC) uses a capacitive split-arrays consisting of 6-b main array, an attenuation capacitor C and a 5-b sub array for low power consumption and small die area. Moreover, splitting the MSB capacitor into sub-capacitors and an asynchronous SAR reduce power consumption. The measurement results show that the proposed ADC achieved the SNDR of 68.32 dB, the SFDR of 79 dB, and the ENOB (effective number of bits) of 11.05 bits. The measured INL and DNL were 1.9LSB and 1.5LSB, respectively. The power consumption including all the digital circuits is 6.7 ${\mu}W$ at the sampling frequency of 100 KHz under 3.3 V supply voltage and the FoM (figure of merit) is 49 fJ/conversion-step.

Implementation of a digital FM composite signal generator (디지털 방식 FM 합성 신호 발생기의 구현)

  • 정도영;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.5
    • /
    • pp.1349-1359
    • /
    • 1998
  • In this paper, presented is the result of a digital implementation of a FM stereo composite signal generator. The chip utilizing DDFS(Direct Digital Frequency Synthesizer architecture is implemented using $1.0\mu\textrm{m}$ CMOS gate-array technology thereby replacing analog componentry. To verify the process of generating composite signals a conventional logic simulation method was used. The processed chip was mounted on an evaluation PCB to test and analyze to signals. According to the measurement result obtained by using a 12-bit DAC, the digital FM composite signal generator produces a 74DB spectrally pure signal over its entire tuning range, which is superior to that of analog counterpart by 14dB in it spectral reponse. And further enhancements of the spectral response is expected to be achieved by using a high resolution digital to analog converter, such as a 16-bit DAC. The resulting signals is superior to the signal of the analoy circuitry typically used, in major characteristics such as S/N ratios, accuracy, tuning stability, and signal seperation.

  • PDF

Design of a 12-bit, 10-Msps SAR A/D Converter with different sampling time applied to the bit-switches within C-DAC (C-DAC 비트 스위치에 다른 샘플링 시간을 인가하는 12-bit, 10-Msps SAR A/D 변환기 설계)

  • Shim, Minsoo;Yoon, Kwangsub;Lee, Jonghwan
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1058-1063
    • /
    • 2020
  • This paper proposes a 12-bit SAR A/D(Successive Approximation Register Analog-to-Digital) converter that operates at low power for bio-signal and sensor signal processing. The conventional SAR A/D converter utilized the reduction of the dynamic current, which resulted in reducing total power consumption. In order to solve the limitation of the sampling time due to charging/discharging of the capacitor for reducing dynamic current, the different sampling time on the C-DAC bit switch operation was applied to reduce the dynamic current. In addition, lowering the supply voltage of the digital block to 0.6V led to 70% reduction of the total power consumption of the proposed ADC. The proposed SAR A/D was implemented with CMOS 65nm process 1-poly 6-metal, operates with a supply voltage of 1.2V. The simulation results demonstrate that ENOB, DNL/INL, power consumption and FoM are 10.4 bits, ±0.5LSB./±1.2LSB, 31.2uW and 2.8fJ/step, respectively.

The Analysis of Total Ionizing Dose Effects on Analog-to-Digital Converter for Space Application (우주용 ADC의 누적방사선량 영향 분석)

  • Kim, Tae-Hyo;Lee, Hee-Chul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.85-90
    • /
    • 2013
  • In this paper, 6bit SAR ADC tolerant to ionizing radiation is presented. Radiation tolerance is achieved by using the Dummy Gate Assisted (DGA) MOSFET which was proposed to suppress the leakage current induced by ionizing radiation and its comparing sample is designed with the conventional MOSFET. The designed ADC consists of binary capacitor DAC, dynamic latch comparator, and digital logic and was fabricated using a standard 0.35um CMOS process. Irradiation was performed by Co-60 gamma ray. After the irradiation, ADC designed with the conventional MOSFET did not operate properly. On the contrary, ADC designed with the DGA MOSFET showed a little parametric degradation of which DNL was increased from 0.7LSB to 2.0LSB and INL was increased from 1.8LSB to 3.2LSB. In spite of its parametric degradation, analog to digital conversion in the ADC with DGA MOSFET was found to be possible.

A 10-bit 100 MSPS CMOS D/A Converter with a Self Calibration Current Bias Circuit (Self Calibration Current Bias 회로에 의한 10-bit 100 MSPS CMOS D/A 변환기의 설계)

  • 이한수;송원철;송민규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.11
    • /
    • pp.83-94
    • /
    • 2003
  • In this paper. a highly linear and low glitch CMOS current mode digital-to-analog converter (DAC) by self calibration bias circuit is proposed. The architecture of the DAC is based on a current steering 6+4 segmented type and new switching scheme for the current cell matrix, which reduced non-linearity error and graded error. In order to achieve a high performance DAC . novel current cell with a low spurious deglitching circuit and a new inverse thermometer decoder are proposed. The prototype DAC was implemented in a 0.35${\mu}{\textrm}{m}$ n-well CMOS technology. Experimental result show that SFDR is 60 ㏈ when sampling frequency is 32MHz and DAC output frequency is 7.92MHz. The DAC dissipates 46 mW at a 3.3 Volt single power supply and occupies a chip area of 1350${\mu}{\textrm}{m}$ ${\times}$750${\mu}{\textrm}{m}$.