• Title/Summary/Keyword: Building insulation materials

Search Result 202, Processing Time 0.024 seconds

Properties of Foamed Concrete According to Types and Concentrations of Foam Agent (기포제 종류 및 희석 농도에 따른 기포 콘크리트의 특성)

  • Kim, Jin-Man;Jeong, Ji-Yong;Hwang, Eui-Hwan;Shin, Sang-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.61-70
    • /
    • 2012
  • Recently, the government has been working feverously to save energy and reduce greenhouse gas emission by enacting Basic Act on Low Carbon Green Growth at the national level. Improving the insulation performance of building exterior and insulator can reduce the energy in the building sector. This study is about developing light-weight foamed concrete insulation panel that can be applied to buildings to save energy and to find the optimal condition for the development of insulation materials that can save energy by enhancing its physical, kinetic and thermal characteristics. Various experimental factors and conditions were considered in the study such as foam agent types (AES=Alcohol Ethoxy Sulfate, AOS=Alpha-Olefin Sulfonate, VS=Vegetable Soap, FP=Fe-Protein), foam agent dilution concentration (1, 3, 5%), and foam percentage (30, 50, 70%). Experiment results indicated that the surface tension of aqueous solution including foam agent, was lower when AOS was used over other foam agents. FP produced relatively stable foams in 3% or more, which produced unstable foams containing high water content and low surface tension when diluted at low concentration. Depending on foam agent types, compressive strength and thermal conductivity were similar at low density range but showed some differences at high concentration range. In addition, when concentrations of foam agent and foaming ratio increased, pore size increased and open pores are formed. In all types of foam agent, thermal conductivity were excellent, satisfying KS standards. The most outstanding performance for insulation panel was obtained when FP 3% was used.

Experiment for the Performance Improvement of Eco House Provided by Habitat for Humanity Nepal(HfH_Nepal) - Case Study of Terai Plain Region, Nepal - (네팔 해비타트(HfH_Nepal) 생태주택 보급현황과 성능개선실험 연구 - 떠라이 평원지역을 중심으로 -)

  • Leem, Youn Taik
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.103-112
    • /
    • 2013
  • The Federal Democratic Republic of Nepal(Nepal) is one of the poorest country in the world. People in Nepal are having lots of housing problems including the lack of housing provision. Even Habitat for Humanity Nepal (HfH_Nepal) has developed various programs to diffuse ecological housing, still there are many problems due to financial and technological shortage. The purpose of this study is to verify the effects of suggestion of performance improvement for HfH_Nepal eco house with introduction of the housing situation and efforts to provide sustainable housing by HfH_Nepal in Terai plain. Ideas on CGI sheet roof with poor insulation, double panel bamboo wall and adobe brick wall which can overcome structural and waterproof flaws of the thin single panel bamboo wall. The experiment result shows that both ideas adapted to adobe brick house reduces daily temperature range 50.8% and humidity adjust effect. For the effective provision of adobe brick house, compressive strength was tested for the bricks made with locally available fiber materials. Brick with jute displayed 41.1% betterment than plain brick with closest packing condition while coconut and straw showed 25.1% and 7.9% improvement respectively. Technical and economic problems brought up during the building and experiment process were listed and countermeasures established. This kinds of building prototype houses and experiments can improve the living conditions of people in developing countries with little supplement of resources. Furthermore, consideration of locally available and affordable material can help the social and ecological sustainability in the world.

A study on thermal simulation for extensive green roof system using a plant canopy model (식생캐노피모델을 통한 저관리 조방형 옥상녹화시스템의 열해석 전산모의에 관한 연구)

  • Kim, Tae Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • GRS is an effective urban ecology restoration technique that can manage a variety of environmental functions such as ecological restoration, rainwater spill control and island heat effect from a low-impact development standpoint that can be utilized in new construction and retrofits. Recently, quantitative evaluation studies, both domestic and abroad, in the areas related to these functions, including near-earth surface climate phenomenon, heavy rainwater regulation, thermal environment of buildings, have been actively underway, and there is a trend to standardize in the form of technological standards. In particular, centered on the advanced European countries, studies of standardizing the specific insulation capability of buildings with green system that comprehensively includes the green roof, from the perspective of replacing the exterior materials of existing buildings, are in progress. The limitation of related studies in the difficulties associated with deriving results that reflect material characteristics of continuously evolving systems due in part to not having sufficiently considered the main components of green system, mechanisms of vegetation, soils. This study attempts to derive, through EnergyPlus, the effects that the vegetation-related indicators such as vegetation height, FCV, etc. have on building energy load, by interpreting vegetation and soil mechanisms through plant canopy model and using an ecological standard indicator LAI that represent the condition of plant growth. Through this, the interpretations that assume green roof system as simple heat insulation will be complemented and a more practical building energy performance evaluation method that reflects numerical methods for heat fluxes phenomena that occur between ecology restoration systems comprised of plants and soil and the ambient space.

Airtightness of Light-Frame Wood Houses built in Daejeon and Chungnam Area

  • Jang, Sang-sik;Ha, Been
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • Among the energy consumption in building, the heating energy takes the largest part. Therefore, it is important to minimize the heat energy loss in building for the reduction of overall energy use in construction. The most important points for the minimization of energy loss in building are insulation and airtightness. Especially, in wood houses, airtightness is very important for energy saving as well as increase of durability. However, the researches on airtightness of wood buildings have been started recently and are very deficient especially in Korea. In this study, air leakage properties and airtightness performance were evaluated for light-frame wood houses built in Daejeon and Chungnam area. Total 7 houses were evaluated, among which four houses (Case 1 to Case 4) were in the construction stage before interior finish and the other three houses (Case 5 to Case 7) were after completion of construction work. The tests for airtightness were conducted by pressurization-depressurization method, and the factors included in the measurements includes air leakage rate at 50 Pa (CMH50), air change rate at 50 Pa (ACH50), equivalent leakage area (EqLA) and EqLA per floor area. As a result of this study, key air leakage points in wood houses were found to be the gaps between floor and wall, the holes for wiring and plumbing, the double glasses windows and the entrance doors. The average value of ACH50 for the houses after completion of construction work was $3.5h^{-1}$ that was similar to Europe standard ($3.0h^{-1}$). ACH50 was proportional to EqLA per floor area but inversely proportional to the internal volume, the net floor area and the area of window.

Hygroscopic Properties of Light-Frame Wall with Different Assemblies

  • Kim, Se-Jong;Park, Chun-Young;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.22-29
    • /
    • 2006
  • On purpose to reduce accumulated moisture and to prevent moisture condensation in a light-frame wall, thermal characteristics and moisture behaviors were investigated for four different wall assemblies; a) typical wall, b) addition of vapor retarder between the insulation and the gypsum board, c) addition of air gap for natural ventilation behind the siding, d) composition with b) and c). Each wall was tested under two climate conditions; 1) $20^{\circ}C$, 50% RH (indoor) and $30^{\circ}C$, 85% RH (outdoor), 2) $30^{\circ}C$, 85% RH (indoor) and $20^{\circ}C$, 50% RH (outdoor).The results showed that the typical wall assembly had poor resistance against moisture intrusion from the inside of building. Outdoor and indoor humidity caused the moisture condensations on the inside of the siding and the back surface of the sheathing respectively. The addition of a vapor retarder did not give significant improvement in preventing the moisture intrusion.

Thermal Performance Evaluation Monitoring Study of Transparent Insulation Wall System (투명단열 축열벽 시스템의 열성능 평가 실험 연구)

  • Kim, B.S.;Yoon, J.H.;Yoon, Y.J.;Baek, N.C.;Lee, J.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2003
  • Various efforts to combine new high-tech materials with solar system have been progressed nowadays in order to improve the performance of the existing passive solar system. TIM(Transparent Insulation Material) replacing the conventional outer building envelope glazing as well as the wall is good example for this trend. TI integrated wall is a thermal mass wall with a special shaped TIM instead of using typical envelope materials The tested TIM type is a small(diameter 4mm and thickness 50mm) capillary tube of Okalux model and cement brick(density 1500kg/m3). The purpose of this study was to analyze the thermal performance through the actual measurements performed in a test cell. This study was carried out to justify the following issues. 1) the impact of Tl-wall over the temperature variations 2) the impact of mass wall surface absorptance over the transient thermal behavior and 3) the impact of thermal mass wall thickness over the temperature variations. Finally, as results indicated that the peak time of room temperature was shifted about one hour early when absorptance of thermal mass wall changed from 60% to 95% for the 190mm thickness thermal mass wall test case. the temperature difference of both surfaces of thermal mass wall surface showed about $23^{\circ}C$ during a day of March for the 380mm thickness thermal mass wall case. However, the thermal mass wall was over-heated by outside temperature and solar radiation in a day of May the temperature difference of both surfaces of thermal mass wall surface was indicated $10^{\circ}C$ and inside temperature was observed more than average 22C.

A Study on the Establish Environmental Impact of Database of the Envelope System for Green Remodeling of Apartment Housing (공동주택의 그린 리모델링을 위한 외피시스템 환경영향 DB 구축에 관한 연구)

  • Lee, Jong Geon;Tae, Sung Ho;Chae, Chang-U;Kim, Rak Hyun
    • KIEAE Journal
    • /
    • v.16 no.5
    • /
    • pp.73-79
    • /
    • 2016
  • Purpose: In order to improve the energy performance of existing buildings, so actively promoted green remodeling business. Also, improvement of the performance of envelope system of apartment housing is an absolute. The purpose of implementation of the data base and application plan of the envelope system for green remodeling of apartment housing. Method: For this study, It proposed a classification system of green remodeling envelope system constructed actual to select the applicable representative method and input material of apartment housing for green remodeling. In this study, divided into construction waste processing stage and production phase of the material for the boundary of the system, and implementation the classification system of the envelope system for applicable green remodeling. For this, established 6 environmental impact categories database. Result: As a result of various suggestions were available for case study research, alternative combinations of existing combinations than six kinds of environmental impact insulation system with superior input materials combining 96 kinds, window system, 12 kinds for determining the applicability of the established database. Depending on the account for a large proportion if compared to the detailed analysis of the environmental impact resulting from the production phase and disposal phase was analyzed that the operating management of the necessary input materials. Is considered that the economic performance and integrated energy performance required by the applicable public housing green remodeling evaluation techniques considered for future improvements insulation sheath.

A Study on the Four-Season Cooling Performance by Color of Water Proofing Membrane Materials Considering the View of Area (지역의 경관을 고려한 도막방수재의 색채별 사계절 차열 및 축열 성능에 관한 연구)

  • Ko, Jin-Soo;Kim, Byung-Yun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.17 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • This study comparatively analyzed thermal characteristics of the green color, which is currently used the most, and other various colors of a rooftop urethane water proofing sheet. This study also analyzed the cooling performance by color of the water proofing sheet that fused cooling paints, and presented the effective water proofing sheet color for building energy savings. The experimental results are as follows: (1) The value of L (brightness) diminished, and brilliance also became lower from the white color to the black color, and thus, it was confirmed that relatively more heat was absorbed. In a and b chromaticity, which is the color attribute that ignores brightness, no special relationship was identified. (2) Considering that the cooling performance effect is bigger in summer than winter, due to heat reflection, the white water proofing sheet is more effective in building energy savings than the green water proofing sheet that is currently used the most. (3) The water proofing sheet's color has an impact more on cooling performance than the color of the background side of a structure on which water proofing sheet is installed. The experiment object of gray, of which background side is similar to cement mortar, was lower by $5.7^{\circ}C$ than the white background side.

Evaluation of Condensation Resistance of Steel Stud Wall Corner Details in Modular Buildings (스틸 스터드 모듈러 건축물 접합부위의 결로방지성능 개선방안 평가)

  • Oh, Ji Hyun;Yang, Si Won;Cho, Bong Ho;Kim, Sun Sook
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 2014
  • Modular systems are widely used in various building types including housing, dormitory, and barracks. Steel studs have many advantages over other materials as construction components of modular buildings in terms of seismic performance, durability and maintenance. However, steel stud modular systems also have weakness in condensation resistance due to high thermal conductivity of steel. The purpose of this study is to investigate the condensation resistance of steel stud wall corner details in modular buildings by thermal simulation. The condensation resistance was evaluated by temperature difference ratio according to ISO 13788. The result showed that there was little difference between the alternatives of adding cavity and insulation. Separation of interstitial steel studs showed outstanding effect on the improvement of temperature difference ratio.

Practical Field Test on the Sound Reduction Properties of Formed Concrete using Bottom Ash (바텀애쉬를 사용한 경량 기포콘크리트의 소음저감 성능에 관한 실증실험 연구)

  • Noh, Jea-Myoung;Kwon, Ki-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.601-604
    • /
    • 2006
  • Recently the new inorganic sound-absorbing material manufacturing techniques have introduced. These mainly is plentifully used in the place where the noise damage becomes problem in life environment, partitioning of the apartment, the railroad and the express highway, school and the residential quarter neighboring area etc. While the sound-absorbing material has vast quantity of open pore, sound insulation material, used in the apartment and high building in order to prevent the sound between layers, has suitable quantity of closed pore. The fly ash is widely used in the cement materials and the concrete binder material. The bottom ash, however, is rarely used for the grain size is big and multiform with unburning carbon ingredient. In this paper, the practical field tests and the results on the sound reduction properties of formed concrete using bottom ash are described.

  • PDF