• Title/Summary/Keyword: Bronsted-type plot

Search Result 11, Processing Time 0.018 seconds

A Mechanistic Study on Addition Reactions of Alicyclic Amines to 3-Butyn-2-one

  • 음익환;이정숙;육성민
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.7
    • /
    • pp.776-779
    • /
    • 1998
  • Second-order rate constants have been measured spectrophotometrically for the addition reaction of a series of alicyclic amines to 3-butyn-2-one to yield their respective enamines at 25.0 'C. The reactivity of the amines increases with increasing the basicity of the amines. However, the Bronsted-type plot obtained exhibits a downward curvature as the basicity of the amines increases, i.e. βnuc decreases from 0.3 for low basic amines (pKa < 9) and to 0.1 for highly basic amines (pKa > 9). Such a curvature in the Bronsted-type plot is clearly indicative of a change in the reaction mechanism or transition state structure. From the corresponding reactions run in D2O, the magnitude of kinetic isotope effect (KIE) has been calculated to be about 0.8 for highly basic amines and 1.21 for weakly basic amines. The difference in the magnitude of KIE also supports a change in the reaction mechanism or transition state structure upon changing the basicity of the amines. Furthermore, the small KIE clearly suggests that H+ transfer is not involved in the rate-determining step, i.e. the addition reaction is considered to proceed via a stepwise mechanism in which the attack of the amines to the acetylene is the rate-determining step. The curvature in the Bronsted-type plot has been attributed to a change in the degree of bond formation between the amine and the acetylene.

Effect of Amine Nature on Rates and Mechanism: Pyridinolyses of 4-Nitrophenyl Benzoate

  • Um, Ik-Hwan;Baek, Mi-Hwa;Han, Hyun-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1245-1250
    • /
    • 2003
  • Pseudo-first-order rate constants ($k_{obs}$) have been measured spectrophotometrically for the reactions of 4-nitrophenyl benzoate with a series of pyridines in $H_2O$ containing 20 mol % DMSO. The plots of kobs vs pyridine concentration are linear up to ca. 0.1 M pyridines, indicating that the effect of self-association of pyridines with their conjugate acids are insignificant in this concentration range. The Bronsted-type plot has been obtained to be linear with a ${\beta}_{nuc}$ value 1.11, suggesting that the pyridinolyses proceed through a rate-determining breakdown of the zwiterionic addition intermediate. The pyridines studied have shown higher reactivity than isobasic primary and secondary amines toward the substrate. 1-Benzoyl-4-dimethylaminopyridinium ion, a possible intermediate, has not been detected since the rate of its hydrolysis in the reaction condition is comparable with or even faster than its formation.

A Kinetic Study for the Reaction of 2,4-Dinitrophenyl Benzoate with Secondary Cyclic Amines

  • 엄익환;김명진;민지숙;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.5
    • /
    • pp.523-527
    • /
    • 1997
  • Apparent second-order rate constants (kapp) have been measured spectrophotometrically for the reaction of 2,4-dinitrophenyl benzoate (DNPB) with 6 secondary cyclic amines in H2O containing 20 mole% DMSO at 25.0±0.1 ℃. The Bronsted-type plot (log kapp vs. pKa) shows a break at pKa near 9.1, e.g. two straight lines with βapp values of 0.67 and 0.44 for the low basic (pKa < 9.1) and the highly basic (pKa > 9.1) amines, respectively. Using an estimated k2 value of 3×109 sec-1, all the other microconstants (k1, k-1 and K) involved in the present aminolysis have been calculated. The k value decreases with increasing the basicity of amines while k1 and K values increase with increasing the amine basicity, as expected. Good linear Bronsted-type plots have been obtained for these microconstants of the present aminolysis of DNPB. The magnitudes of the slope of the Bronsted-type plots, k1 and k-1 have been calculated to be 0.43 and - 0.24, respectively, indicating the k-1 step is about two folds less sensitive than the k1 step to the amine basicity. The K value has been calculated to be 0.66, which appears to be much smaller than the one for other aminolyses showing general base catalysis. The small K value has been attributed to the absence of general base catalysis in the present aminolysis of DNPB.

Structure-Reactivity Correlations in Nucleophilic Displacement Reactions of Y-Substituted-Phenyl X-Substituted-Cinnamates with Z-Substituted-Phenoxides

  • Son, Yu-Jin;Kim, Eun-Hee;Kang, Ji-Sun;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.8
    • /
    • pp.2455-2460
    • /
    • 2013
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the nucleophilic displacement reactions of 4-nitrophenyl X-substituted-cinnamates (4a-4e) and Y-substituted-phenyl cinnamates (5a-5e) with Z-substituted-phenoxide anions in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Hammett plot for the reactions of 4a-4e with 4-chlorophenoxide (4-$ClPhO^-$) consists of two intersecting straight lines, which might be taken as a change in the rate-determining step (RDS). However, it has been concluded that the nonlinear Hammett plot is not due to a change in the RDS but is caused by stabilization of the ground state of substrates possessing an electron-withdrawing group in the cinnamoyl moiety through resonance interactions, since the Yukawa-Tsuno plot exhibits an excellent linear correlation with ${\rho}X=0.89$ and r = 0.58. The Br${\o}$nsted-type plot for the reactions of 4-nitrophenyl cinnamate (4c) with Z-substituted-phenoxides is linear with ${\beta}_{nuc}=0.76$. The Br${\o}$nsted-type plot for the reactions of Y-substituted-phenyl cinnamates (5a-5d) with 4-chlorophenoxides (4-$ClPhO^-$) is also linear with ${\beta}_{lg}=-0.72$. The Hammett plot correlated with ${\sigma}^-$ constants for the reactions of 5a-5d results in a much better linear correlation than that correlated with ${\sigma}^o$ constants, indicating that a partial negative charge develops on the O atom of the leaving aryloxide. Thus, the reactions have been concluded to proceed through a concerted mechanism.

Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism

  • Um, Ik-Hwan;Akhtar, Kalsoom
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.772-776
    • /
    • 2008
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 3,4-dintrophenyl 2-furoate (2) with a series of secondary alicyclic amines in 80 mol % $H_2O$/20 mol % dimethyl sulfoxide (DMSO) at 25.0 ${^{\circ}C}$. The Bronsted-type plot exhibits a downward curvature for the aminolysis of 2, which is similar to that reported for the corresponding reactions of 2,4-dintrophenyl 2-furoate (1). Substrate 2 is less reactive than 1 toward all the amines studied but the reactivity difference becomes smaller as the amine basicity increases. Dissection of the second-order rate constants into the microscopic rate constants has revealed that the reaction of 2 results in a smaller $k_2/k_{-1}$ ratio but slightly larger $k_1$ value than that of 1. Steric hindrance has been suggested to be responsible for the smaller $k_1$ value found for the reactions of 1, since the ortho-substituent of 1 would inhibit the attack of amines (i.e., the $k_1$ process).

Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism

  • Hwang, So-Jeong;Park, Youn-Min;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.10
    • /
    • pp.1911-1914
    • /
    • 2008
  • Second-order rate constants (kN) have been measured for Michael-type addition reactions of a series of alicyclic secondary amines to 1-phenyl-2-propyn-1-one (2) in MeCN at 25.0 ${\pm}$ 0.1 ${^{\circ}C}$. All the amines studied are less reactive in MeCN than in $H_2O$ although they are more basic in the aprotic solvent by 7-9 p$K_a$ units. The Bronsted-type plot is linear with $\beta_{nuc}$ = 0.40, which is slightly larger than that reported previously for the corresponding reactions in $H_2O$ ($\beta_{nuc}$ = 0.27). Product analysis has shown that only E-isomer is produced. Kinetic isotope effect is absent for the reactions of 2 with morpholine and deuterated morpholine (i.e., $k^H/k^D$ = 1.0). Thus, the reaction has been concluded to proceed through a stepwise mechanism, in which proton transfer occurs after the rate-determining step. The reaction has been suggested to proceed through a tighter transition state in MeCN than in H2O on the basis of the larger $\beta_{nuc}$ in the aprotic solvent. The nature of the transition state has been proposed to be responsible for the decreased reactivity in the aprotic solvent.

Alkaline Hydrolysis of Y-Substituted Phenyl Phenyl Thionocarbonates: Effect of Changing Electrophilic Center from C=O to C=S on Reactivity and Mechanism

  • Kim, Song-I;Park, Hey-Ran;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.179-182
    • /
    • 2011
  • Second-order rate constants ($k_{OH^-}$) have been measured spectrophotometrically for reactions of Y-substituted phenyl phenyl thionocarbonates (4a-i) with $OH^-$ in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The $k_{OH^-}$ values for the reactions of 4a-i have been compared with those reported previously for the corresponding reactions of Y-substituted phenyl phenyl carbonates (3a-i) to investigate the effect of changing the electrophilic center from C=O to C=S on reactivity and mechanism. Thionocarbonates 4a-i are less reactive than the corresponding carbonates 3a-i although 4a-i are expected to be more reactive than 3a-i. The Bronsted-type plot for reactions of 4a-i is linear with $\beta_{lg}$ = -0.33, a typical $\beta_{lg}$ value for reactions reported to proceed through a stepwise mechanism with formation of an intermediate being the rate-determining step (RDS). Furthermore, the Hammett plot correlated with $\sigma^o$ constants results in much better linearity than that correlated with $\sigma^-$ constants, indicating that expulsion of the leaving group is not advanced in the RDS. Thus, alkaline hydrolysis of 4a-i has been concluded to proceed through a stepwise mechanism with formation of an intermediate being RDS, which is in contrast to the forced concerted mechanism reported for the corresponding reactions of 3a-i. Enhanced stability of the intermediate upon modification of the electrophilic center from C=O to C=S has been concluded to be responsible for the contrasting mechanisms.

A Kinetic Study on Ethylaminolysis of Phenyl Y-Substituted-Phenyl Carbonates: Effect of Leaving-Group Substituents on Reactivity and Reaction Mechanism

  • Song, Yoon-Ju;Kim, Min-Young;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1722-1726
    • /
    • 2013
  • A kinetic study on nucleophilic substitution reactions of phenyl Y-substituted-phenyl carbonates (5a-5j) with ethylamine in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$ is reported. The plots of $k_{obsd}$ vs. [amine] are linear for the reactions of substrates possessing a strong electron-withdrawing group (EWG) but curve upward for those of substrates bearing a weak EWG, indicating that the electronic nature of the substituent Y in the leaving group governs the reaction mechanism. The reactions have been concluded to proceed through a stepwise mechanism with one or two intermediates (a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$) depending on the nature of the substituent Y. Analysis of Bronsted-type plots and dissection of $k_{obsd}$ into microscopic rate constants have revealed that the reactions of substrates possessing a strong EWG (e.g., 5a-5f) proceed through $T^{\pm}$ with its formation being the rate-determining step, while those of substrates bearing a weak EWG (e.g., 5g-5j) proceed through $T^{\pm}$ and $T^-$.

Effect of Nonleaving Group on the Reaction Rate and Mechanism: Aminolyses of 4-Nitrophenyl Acetate, Benzoate and Phenyl Carbonate

  • Um, Ik-Hwan;Park, Hye-Ran;Kim, Eun-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1251-1255
    • /
    • 2003
  • Second-order rate constants have been determined spectrophotometrically for the reaction of phenyl 4-nitrophenyl carbonate with a series of primary amines in $H_2O$ containing 20 mol % DMSO at 25.0 ${\circ}$C. The Bronsted-type plot is linear with a ${\beta}_{nuc}\;0.69 {\pm} 0.04$, which is slightly smaller than the ${\beta}_{nuc}$ values for the reactions of 4-nitrophenyl acetate ( $\beta_{nuc}= 0.82 {\pm} 0.03$) and benzoate ( $\beta_{nuc} = 0.76 {\pm} 0.01$), indicating that the reaction proceeds through a tetrahedral zwitterionic intermediate $T^{\pm}$. The carbonate is more reactive than the corresponding acetate and benzoate. The changing Me (or Ph) to PhO has resulted in a decrease in the ${\beta}_{nuc}$ value without changing the reaction mechanism but an increase in the reactivity. The electronic effect of the substituent in the nonleaving group appears to be responsible for the enhanced reactivity of the carbonate compared with the corresponding acetate and benzoate.