Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism

Ik-Hwan Um* and Kalsoom Akhtar
Division of Nano Sciences and Department of Chemistry, Ewha Womans Chiversity, Seoul 120-750, Korea
E-mail: ihumatewhaackr
Recenved February 2, 2008

Abstract

Second-order rate constants (k_{N}) have been measured spectrophotometrically for reactions of 3.4-dintrophenyl 2-furoate (2) with a series of secondary alicyclic amines in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \%$ dimethyl sulfoxide (DMSO) at $25.0^{\circ} \mathrm{C}$. The Bronsted-type plot exhibits a downward curvature for the aminolysis of $\mathbf{2}$. which is similar to that reported for the corresponding reactions of 2.4 -dintrophenyl 2 -furoate (1). Substrate $\mathbf{2}$ is less reactive than 1 toward all the amines studied but the reactivity difference becomes smaller as the amine basicity increases. Dissection of the second-order rate constants into the microscopic rate constants has revealed that the reaction of $\mathbf{2}$ results in a smaller k / k_{-1} ratio but slightly larger k_{1} value than that of $\mathbf{1}$. Steric hindrance has been suggested to be responsible for the smaller k_{1}, value found for the reactions of 1 . since the ortho-substituent of $\mathbf{1}$ would inhibit the attack of amines (i.e.. the k_{1} process).

Key Words : Aminolysis. Bronsted-type plot. Steric lindrance, Reaction mechanism, ortho-Effect

Introduction

Aminolyses of esters have been intensively investigated including computational studies due to their importance in biological processes as well as in synthetic applications. ${ }^{1-9}$ The reactions have generally been understood to proceed through a zwitterionic tetrahedral intermediate ($\mathrm{T}^{ \pm}$). The rate-determining step (RDS) has been suggested to be dependent on the basicity of the attacking amine and the leaving group, i.e.. it changes from breakdown of $\mathrm{T}^{=}$to its formation as the attacking amine becomes more basic than the leaving group by 4 to $5 \mathrm{p} K_{a}$ units. ${ }^{1-5}$
Esters with 2.4-dinitrophenoxide as a leaving group (e.g. 1) have often exhibited a lower reactivity than those with 3.4-dinitrophenoxide (e.g. 2) ${ }^{1613}$ although 2.4 -dinitrophenoxide is expected to be more nucleofugic than 3.4dinitrophenoxide on the basis of the fact that the former is less basic than the latter. Since the substituent at the orthoposition would cause steric hindrance. Jencks et al. have suggested that steric effect is responsible for the decreased reactivity shown by esters with a substituent at the orthoposition of the leaving group. ${ }^{11}$ However. the steric effect has never been investigated in a microscopic rate constant level.

We have recently performed a kinetic study on aminolysis of 2 .4-dinitrophenyl 2 -furoate (1) and concluded that the reaction proceeds through a zwitterionic tetrahedral intermediate ($\mathrm{T}^{=}$) with a change in the RDS on changing the basicity of amines. ${ }^{1 /}$ The kinetic study has now been extend-

ed to reactions of 3.4-dinitrophenyl 2 -furoate (2) with a series of alicyclic secondary amines as shown in Scheme 1 . The kinetic data in the current study have been compared with those reported for the corresponding reactions of 1 to investigate the effect of changing the leaving group from 2.4-dinitrophenoxide to 3.4-dinitrophenoxide on reactivity and reaction mechanism (i.e.. an ortho-substituent effect) in a microscopic rate constant level.

Results and Discussion

Reactions of 2 with all the amines studied proceeded with quantitative liberation of 3.4-dinitrophenoxide ion. The reactions were followed by monitoring the appearance of the leaving group at 410 nm . Kinetic study was performed under pseudo-first-order conditions. i.e., the concentration of amines was at least 20 times in excess over that of the substrate 2. All reactions obeyed first-order kinetics. Pseudo-first-order rate constants ($k_{\text {obsil }}$) were determined from the equation. $\ln \left(A_{x}-A_{\mathrm{t}}\right)=-k_{\text {cbsil }} t+C$. The plots of $k_{\text {vesd }} v s$. the amine concentration were linear passing through the origin,

Table 1. Summary of Second-order Rate Constants ($k, v, \mathrm{M}^{-1} \mathrm{~s}^{-1}$) for Reactions of 3,4-Dinitrophenyl 2-Furoates (2) and 2,4-Dinitropheny1 2-Furoartes (1) with a Series of Secondary Alicyelic Amines in $20 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}^{\prime \prime}$

Entry	Amines	pK_{3}	$k_{\mathrm{s}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	
			2	1
1.	piperidine	11.02	396	427
2.	3-methylpiperidine	10.80	329	402
3.	piperacine	9.85	175	224
4.	morpholine	8.65	302	43.5
5.	l-fonnylpiperazine	7.98	575	12.3
6.	piperazinium ion	5.95	0.383	147

${ }^{\text {a }}$ The data for the reactions of 1 were taken from ref. 12 .
indicating that general base catalysis by a second amine molecule is absent and the contribution of OH^{-}ion from the hydrolysis of amines to $k_{\text {bosd }}$ is negligible. Thus. the rate equation can be given as eq. (1). The second-order rate constants (k_{v}) were determined from the slope of the linear plots of $k_{\text {obsd }} v s$. the amine concentration. Generally five different annine concentrations were used to determine k_{R} values. It is estimated from replicate runs that the uncertainty in the rate constants is less than 3%. The k_{v} values determined in this way are summarized in Table I together with those reported for the corresponding reactions of $\mathbf{1}$ for comparison purpose.

$$
\begin{equation*}
\text { rate }=k_{\mathrm{obsic}}[2] \text {, where } k_{\mathrm{obsd}}=k_{\mathrm{R}} \text { [amine] } \tag{1}
\end{equation*}
$$

Effect of ortho-Substituent on Reactivity and Mechanism. As shown in Table 1. the second-order rate constant for the reaction of 2 decreases as the basicity of ammes decreases, i.e.. k decreases from $396 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ to 30.2 and $0.383 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ as the $\mathrm{p} K_{\mathrm{r}}$ of ammes decreases from 11.02 to 8.65 and 5.95 , respectively. A similar result is shown for the

Figure 1. Bronsted-type plots for the reactions of $1(0)$ and 2 with secondary alicyclic amines in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}$. The identity of points is given in lable 1 .

Figure 2. Plot of $\log h_{\mathrm{s}}$ for the reactions of 1 vs. $\log k \mathrm{v}$ for the reactions of $\mathbf{2}$ in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}$.
corresponding reactions of 1 .
The effect of amine basicity on reactivity is illustrated in Figure 1. The Bronsted-type plot exhibits a downward curvature for the reactions of $\mathbf{1}$ and 2 , when $k \mathrm{v}$ and $\mathrm{p} K_{\mathrm{a}}$ are statistically corrected using p and q (i.e., $p=2$ except $p=4$ for piperazinium ion and $q=1$ except $q=2$ for piperazine). ${ }^{13}$ It is also noted that the slope of the Bronsted-type plots is a little larger for the reactions of 2 than for those of $\mathbf{1}$.

Figure l shows that $\mathbf{2}$ is less reactive than $\mathbf{1}$ toward all the amines studied. However, interestingly, the reactivity difference between $\mathbf{1}$ and $\mathbf{2}$ becomes smaller as the amine basicity increases. Moreover, 2 would be expected to be more reactive than 1 when the amine basicity increases further (e.g. $\mathrm{p} K_{\mathrm{a}}>11.5$).

A plot of $\log k_{\mathrm{N}}$ for the reactions of $1 \mathrm{vs} \cdot \log k_{\mathrm{N}}$ for the corresponding reactions of $\mathbf{2}$ has been constructed to investigate the effect of the ortho- NO_{2} on reaction mechanism. As shown in Figure 2. an excellent linear correlation is obtained (e.g.. $\mathrm{R}^{2}=0.9991$) with a slope of 1.21 . Such a good linear plot suggests that the reactions of $\mathbf{1}$ and $\mathbf{2}$ proceed through the same mechanism. The slope of 1.21 is consistent with the fact that $\mathbf{2}$ is more sensitive than $\mathbf{1}$ toward the amine basicity (see Figure 1). Accordingly, one can suggest that shifting the NO_{2} group from the ortho-position to the metaposition can influence the reactivity but not the reaction mechanism.

The reactions of 1 with the current secondary alicyclic amines have been suggested to proceed through $\mathrm{T}^{ \pm}$with a change in the RDS at $\mathrm{p} K_{\mathrm{a}}=9.1$, which is ca. $5 \mathrm{p} K_{\mathrm{a}}$ units more basic than the leaving 2.4 -dinitrophenoxide (i.e, $\mathrm{p} K_{4}$ of 2,4 -dinitrophenol $=4.11$). Thus, one can suggest that the current reactions of 2 proceed also through $\mathrm{T}^{ \pm}$with a change in the RDS as shown in Scheme 1 on the basis of the curved Bronsted-type plot in Figure 1 and the linear plot in Figure 2.

Evaluation of Microscopic Rate Constants. The nonlinear Bronsted-type plot shown in Figure 1 for the aminolysis of 2 has been analyzed using a semiempirical equation (eq. 2) ${ }^{11.14}$ on the basis of the proposed mechanism. The parameters β_{1} and β_{2} represent the slope of the curved Bronsted plot in Figure 1 for the reactions with strongly basic and weakly basic amines, respectively. Here k_{1}° refers to the k value at $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$ (i.e.. the $\mathrm{p} K_{\pi}$ at the center of Bronsted curvature where $k_{2} / k_{-1}=1$).

$$
\begin{gather*}
\log \left(k_{\mathrm{v}} / \mathrm{y}_{\mathrm{y}}{ }^{\circ}\right)=\beta_{2}\left(\mathrm{p} K_{\mathrm{a}}-\mathrm{p} K_{\mathrm{a}}{ }^{\circ}\right)-\log \left(1+\alpha^{0}\right) / 2 \\
\text { where } \log \alpha=\left(\beta_{2}-\beta_{\mathrm{l}}\right)\left(\mathrm{p} K_{\mathrm{a}}-\mathrm{p} K_{\mathrm{a}}{ }^{\circ}\right) \tag{2}
\end{gather*}
$$

The parameters determined from the fitting of eq. (2) to the experimental points are $\beta_{1}=0.33, \beta_{2}=0.76$. and $\mathrm{p} K_{a}^{\circ}=$ 10.4 for the reactions of 2 . The β_{1} value for the reactions of 2 is the same as that reported for the reactions of 1 . while β_{2} is slightly larger for the reactions of $2\left(\beta_{2}=0.76\right)$ than for those of $\mathbf{1}\left(\dot{\beta}_{2}=0.73\right)$. The $\mathrm{p} K_{\mathrm{a}}{ }^{0}$ value for the reactions of $\mathbf{2}$ is 10.4 . which is $c a .5 \mathrm{p} K_{\mathrm{a}}$ units larger than the $\mathrm{p} K_{\mathrm{a}}$ of 3.4 -dinitrophenol (i.e. 5.42). Thus the $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}$ value of 10.4 for the reactions of 2 is consistent with the report that a change in the RDS occurs as the attacking amine becomes more basic than the leaving aryloxide by 4 to $5 \mathrm{p} K_{\mathrm{a}}$ units.

The k values for the reactions of $\mathbf{2}$ have been dissected into their microscopic rate constants as shown below. The apparent second-order rate constant k y can be expressed as eq. (3) by applying the steady-state conditions to the intermediate on the basis of the proposed mechanism.

$$
\begin{equation*}
k_{\mathrm{N}}=k_{1} k \nu /\left(k_{-1}+k_{2}\right) \tag{3}
\end{equation*}
$$

The k_{y} / k_{-1} ratios associated with the aminolysis of 2 have been determined using eqs. (4)-(9). Eq. (3) can be simplified to eq. (4) or (5). Then. β_{1} and β_{2} can be expressed as eqs. (6) and (7), respectively:

$$
\begin{align*}
k_{\mathrm{v}} & =k_{1} k_{2} / k_{-1}, \text { when } k_{2} \ll k_{-1} \tag{4}\\
k_{\mathrm{y}} & =k_{1}, \text { when } k_{1} \gg k_{-1} \tag{5}\\
\beta_{1} & =\mathrm{d}\left(\log k_{1}\right) / \mathrm{d}\left(\mathrm{p} K_{\mathrm{a}}\right) \tag{6}\\
\beta_{2} & =\mathrm{d}\left(\log k_{1} k_{2} / k_{-1}\right) / \mathrm{d}\left(\mathrm{p} K_{\mathrm{a}}\right) \\
& =\beta_{1}+\mathrm{d}\left(\log k \mathrm{l} / k_{-1}\right) / \mathrm{d}\left(\mathrm{p} K_{\mathrm{a}}\right) \tag{7}
\end{align*}
$$

Eq. (7) can be rearranged as eq. (8). Integral of eq. (8) from $\mathrm{p} K_{\mathrm{a}}^{0}$ results in eq. (9). Since $k_{2}=k_{-1}$ at $\mathrm{p} K_{\mathrm{a}}{ }^{0}$. the term $\left(\log k_{y} / k_{-1}\right)_{\text {p } K: a}$ is zero. Therefore. one can calculate the $k y / k_{-1}$ ratios for the aminolysis of 2 from eq. (9) using $\mathrm{p} K_{\mathrm{a}}{ }^{\circ}=10.4$. $\beta_{1}=0.33$, and $\beta_{2}=0.76$. The k_{1} values have been determined from eq. (10) using the k_{N} values in Table 1 and the
 are summarized in Table 2 .

$$
\begin{align*}
& \beta_{2}-\beta_{1}=\mathrm{d}\left(\log k_{2} / k_{-1}\right) / \mathrm{d}\left(\mathrm{p} K_{\mathrm{a}}\right) \tag{8}\\
& \left(\log k_{2} / k_{-1}\right)_{\mathrm{p} K_{\mathrm{a}}^{\prime}}=\left(\beta_{2}-\beta_{1}\right)\left(\mathrm{p} K_{\mathrm{a}}-\mathrm{p} K_{\mathrm{a}}^{\circ}\right) \tag{9}\\
& k_{\mathrm{y}}=k_{1} k_{2} /\left(k_{-1}+k_{2}\right)=k_{1} /\left(k_{-1} / k_{2}+1\right) \tag{10}
\end{align*}
$$

Effect of ortho-Substituent on Microscopic Rate Constants. It has been suggested that k_{2} is independent of the

Table 2. Sunmary of Microscopic Rate Constants k_{2} / k_{-1} Ratios and k_{1} values for the Reactions of $\mathbf{2}$ (and $\mathbf{1}$, in parentheses) with a Series of Secondary Alicyclic Amines in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}^{a}$

Entry	Amine	$\mathrm{p} K_{\mathrm{a}}$	k_{1} / k_{-1}	$k_{1} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$
1.	piperidine	11.02	$2.44(7.73)$	$558(482)$
2.	3-methylpiperidine	10.80	$2.00(6.32)$	$493(466)$
3.	piperazine	9.85	$0.580(2.00)$	$477(336)$
4.	morpholine	8.65	$0.238(0.872)$	$157(93.4)$
5.	1-formylpiperazine	7.98	$0.123(0.470)$	$52.7(38.5)$
6.	piperazinium ion	5.95	$0.022(0.096)$	$17.7(16.8)$

${ }^{a}$ The data for the reactions of $\mathbf{1}$ were taken from ref. 12.

Figure 3. Plots of $\log k_{2} / k_{-1}$ versus pK_{3}^{\prime} tor the reactions of 1 ($\overline{\text { a }}$ and 2 ($)$ with a series of secondary alicyclic amines in $80 \mathrm{~mol} \%$ $\mathrm{H}_{2} \mathrm{O} / 20 \mathrm{~mol} \% \mathrm{DMSO}$ at $25.0 \pm 0.1^{\circ} \mathrm{C}$.
basicity of amines. since the N atom of the aminium moiety of $\mathrm{T}^{ \pm}$cannot exert a push to expel the leaving ary loxide from $\mathrm{T}^{ \pm}$due to the lack of an electron pair on its nitrogen atom. ${ }^{11,15}$ However. the k_{-1} value would decrease as the amine basicity increases. Accordingly. one might expect that the k_{2} / k_{-1} ratio would increase as the amine basicity increases. In fact, Table 2 shows that the k_{2} / k_{-1} ratio increases as the amine basicity increases for the aminolyses of $\mathbf{1}$ and 2 .

The effect of amine basicity on the k_{2} / k_{-1} ratio is illustrated in Figure 3. The plots of $\log k_{2} / k_{-1}$ v. $\mathrm{p} K_{4}$ are linear for the reactions of $\mathbf{1}$ and $\mathbf{2}$. although the slope of the linear plots is slightly larger for the reactions of 2 (i.e.. $\beta_{-1}=0.43$) than for those of 1 (i.e.. $\beta_{-1}=0.40$). The larger β_{-1} value obtained for the reactions of less reactive $\mathbf{2}$ appears to be consistent with the so-called reactivity-selectivity principle (RSP). ${ }^{16}$

One might expect that the reactions of $\mathbf{2}$ would result in a smaller k_{2} value than those of 1 , since 3,4 -dinitrophenoxide is more basic and a poorer leaving group than 2.4 -dinitrophenoxide. However. the k_{-1} value would not be influenced by the basicity of the leaving group. Thus. one might expect

Figure 4. Bronsted-type plots tor the reactions of k_{1} of $\mathbf{1}(0)$ and 2 () with a series of secondary alicyclic amines in $80 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O}$ / $20 \mathrm{~mol} \%$ DMSO at $25.0 \pm 0.1^{\circ} \mathrm{C}$. The identity of points is given in Table 2.
that the $k-/ k_{-1}$ ratio is smaller for the reactions of 2 than for those of 1 . In fact, Figure 3 shows that the k_{2} / k_{-1} ratio is smaller for the reactions of $\mathbf{2}$ than for those of $\mathbf{1}$ for a given amine.

As shown in Figure 4, k_{1} increases linearly with increasing amine basicity for the reactions of $\mathbf{1}$ and $\mathbf{2}$. However, the k_{1} value is slightly larger for the reactions of $\mathbf{2}$ than for those of 1, although 2 has a more basic leaving group than 1 (see Table 2). Since the ortho- NO_{2} in substrate 1 would cause steric hindrance in the k_{1} process, one can suggest that steric effect is responsible for the fact that the reaction of $\mathbf{1}$ results in a smaller k_{1} value than that of $\mathbf{2}$ for a given amine.

Conclusions

The current study has allowed us to conclude the following: (1) Aminolyses of $\mathbf{1}$ and 2 proceed through $T^{=}$with a change in the RDS. (2) Substrate 2 is less reactive than substrate 1 toward all the secondary amines studied. However. the difference in reactivity becomes smaller as the amine basicity increases. (3) Dissection of k_{N} into the microscopic rate constants has revealed that aminolysis of 2 results in smaller k_{2} / k_{-1} ratio but larger k_{1} value than that of 1. (4) Steric hindrance has been suggested to be responsible for the smaller k_{1} value obtained from the reactions of $\mathbf{1}$.

Experimental Section

Materials. Substrate 2 was readily prepared from the reaction of 3 ,4-dinitrophenol and 2 -furoyl chloride in the presence of triethylamine in anhydrous ether. The purity was confirmed by its melting point and ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{\text {h }}$

Ammes and other chemicals were of the lughest quality available and were generally recrystallized or distilled before use. Due to the low solubility of 2 in pure $\mathrm{H}_{2} \mathrm{O}, 20$ $\mathrm{mol} \% \mathrm{DMSO} / 80 \mathrm{~mol} \% \mathrm{H}_{3} \mathrm{O}$ was used as the reaction medium. Doubly glass distilled water was further boiled and cooled under nitrogen just before use.

Kinetics. The kinetic studies were performed at 25.0 ± 0.1 ${ }^{\circ} \mathrm{C}$ with a Scinco $\mathrm{S}-3100 \mathrm{UV}$-Vis spectrophotometer equipped with a constant temperature circulating bath for slow reactions (e.g., $t_{12} \geq 10 \mathrm{~s}$) or with a stopped-flow spectrophotometer for fast reactions (e.g. $t_{1: 2}<10 \mathrm{~s}$). The reactions were followed by monitoring the appearance of 3.4 -dinitrophenoxide ion at 410 mm . All the reactions were carried out under pseudo-first-order conditions in which the amine concentration was at least 20 times greater than that of the substrate.

Products Analysis. 3.4-Dinitrophenoxide ion was liberated quantitatively and identified as one of the reaction products by comparison of the UV-vis spectra after the completion of the reactions with those of the authentic samples under the same reaction conditions.

Acknowledgments. This work was supported by a grant from Korea Research Foundation (KRF-2005-015-C00256). K. Akhtar is also grateful to Korea Research Foundation for the Predominant Foreign Student Scholarship (KRF-2007-211-C00021).

References

1. (a) Johnson. S. L. Ads Phys. Org. Chem. 1967. 5. 237-270. (b) Kirby. A. J. In Organic Reaction Mechanisnts: Knipe. A. C.: Watts. W. E.. Eds.: Wiley and Sons: New York. 1980. (c) Page. M. I.: Williams. A. Organic and Bio-organic Mechanisms: Longman: Harlow, U.K., 1997: Chapter 7. (d) Bernett, A. J.: Brown, R. S. In Physical Organic Chemisty of Acyl Transfer Reactions. Conprehensive Biological Catalysis, Academic Press: New York. 1998: vol. 1.
2. (a) Tencks. W. P.: Gilchrist. M. J. Am. Chem. Soc. 1968. 90. 26222637. (b) Tencks. W. P. Chem. Soc. Rev. 1981. 10. 345-375. (c) Williams. A. Ade Phps. Org Chem. 1992, 27, 2-55. (d) Menger. F. M.: Smith. J. H. J. Am. Chem. Soc. 1972. 9f, 3824-3829. (e) Tsang, W. Y.: Ahmed, N.: Page. M. I. Org Bionol. Chem. 2007. 5.485-493.
3. (a) Castro. E. A. Chem. Rev: 1999. 99. 3505-3524. (b) Castro. E. A: Aguayo. R.: Bessolo. T.: Santos. T. G. J. Org. Chen. 2005. 70. 7788-7791. (c) Castro. E. A.: Aguayo. R.; Bessolo. J.; Santos. J. G. J. Org. Chem. 2005. 70. $3530-3536$. (d) Castro. E. A.: Alaga M.; Santos. J. G. J. Org. Chem. 2005, 70, 2679-2685. (e) Castro. E. A.: Aguayo. R.: Bessolo. J.: Santos. J. G. J. Phes. Org. Chen. 2006. 19. 555-561. (c) Castro. E. A.: Echevarria. G. R.: Opazo. A.: Robert. P: Santos. T. G J. Phes. Org. Chem. 2006. 19. 129-135.
4. (a) Oh. H. K.: Park, J. E.: Sung. D. D.: Lee. I. J. Org Chem. 2004. 69. $3150-3153$. (b) Oh. H. K.: Oh. J. Y;; Sung. D. D.; Lee. I. J. Org. Chem 2005. 70, 5624-5629. (c) Oh, H. K.; Jin, Y. C.; Sung. D. D.: Lee. I. Ong. Bionol. Chem. 2005. 3. 1240-1244. (d) Sung. D. D.: Koo. I. S.: Yang. K. Y.: Lee. I. Chem. Phws Lell. 2006. 132. 426-430 (e) Sung. D. D.: Koo. I. S.: Yang. K. Y.: Lee. I. Chem. Phys. Lett. 2006. +26, 280-284, (t) Sung. D. D.: Kang, S. S.; Lee. J. P.; Jung. D. I; Ryu, Z. H.: Lee, I. Bull. Korean Chem. Soc. 2007. 28. 1670-1674. (g) Hoque, M. E. U!; Dey, N. K.: Guha. A. K.; Kim. C. K.: Lee. B. S.: Lee. H. W. Bull. Korem Chem. Soc. 2007.
5. 1797-1802. (1) Kim. C. K.: Kim. D. J.: Zhang. H.: Hsieh. Y. H.: Lee. B. S.: Lee. H. W.: Kim. C. K. Bull. Forean Chem. Soc. 2007. 28. 1031-1034. (i) Eltesham. M. H. U.: Lee. H. W. Bufl. Korean (them. Soc. 2007, 28, 936-940.
6. (a) Um. I. H.: Jeon. S. E.: Seok, J. A. Chem. Eur. J. $2006,12$. 1237-1243. (b) Um. I. H.; Hwang. S. J.: Baek. M. H.; Park. E. I. J. Org. Chen. 2006. 71. 9191-9197. (c) Um. I. H.: Lee. J. Y.: Ko. S. H. Bae. S. K. J. Org. Chem. 2006. 71. 5800-5803. (d) Um. I. H.: Kim. E. Y.: Park. H. R.: Jeon. S. E. J. Org. Chem. 2006. 71. 23022306. (e) Um. I. H:' Lee, J. Y: Fujio. M.: Tsuno, Y. Org. Biomol. Chem. 2006. 4, 2979-2985. (f) Um. I. H.; Min, S. W.: Dust. I. M. J. Org. Chem. 2007, 72. 8797-8803. (g) Um. I. H.: Park. Y. M: Fujio. M.: Mishima. M.: Tsuno. Y. J. Org. Chem. 2007. 72. 4816 4821. (h) Um. I. H: Akhtar. K.: Park. Y. M:: Khan. S. B. Bull. Korean Chem. Soc. 2007. 28. 1353-1357.
7. (a) Guthrie. R. D. Pure Appl. Chem. 1989, 61, 23-56. (b) Guthrie, I. P. J. Am. (them. Soc. 1991. 113, 3941-3949.
8. (a) Oie, T.: Loew, G. H.: Burt. S. K.: Birkley, J. S.: Mcelroy. R. D. J. Am. Chen. Soc. 1982. I0t. 6169-6174. (b) Zipse. H.: Wang. L.: Houk. K. N. Liebigs Am 1996. 1511-1522.
9. (a) Lee. H. W.: Guha. A. K.: Kim. C. K.: Lee. I. J. Org. Chem. 2002, 67. 2215-2222. (b) Lee. I.; Sung, D. D. Cwr. Org. (hem.
10. 8. 557-567. (c) Lee. I.: Lee. H. W.: Lee. B. C.: Choi. J. H. Bull. Korem Chent. Soc. 2002. 23. 201-204.
1. (a) Yang. W.: Drueckhammer. D. G. Org. Lett. 2000. 2. $4133-$ 4136. (b) Ilieva. S.: Galabov. B.; Musaev. D. G.; Morokuma. K.; Schaefer. H. F. II. J. Org. Chem. 2003. 68, 1496-1502.
2. (a) Um, I. H.'; Shin. Y. H.; Han, J. Y.: Mishima, M. J. Org. Chem. 2006. 71. 7715-7720.
3. (a) Gresser. M. T.: Tencks. W. P. J. An. Chem. Soc. 1977. 99. $6963-$ 6970. (b) Gresser. M. J.: Jencks. W. P. J. Am. Chem. Soc. 1977.99. 6970-6980.
4. Um. I. H.; Chun, S. M.: Akihtar, K. Bull. Korean Chem. Soc. 2007. 28. 220-224.
5. Bell. R. P. The Proton in Chemistry: Methuen: London1. 1959. p 159.
6. Castro. E. A.: Moodie. R. B. J. Chen. Soc., Chem. Conmum. 1973. 828-829.
7. (a) Castro, E. A.: Santander, C. L. J. Org. Chem. 1985. 50, 35953600. (b) Castro, E. A.: Valdivia. J. L. J. Org Chem. 1986, 51. 1668-1672. (c) Castro. E. A.: Steinfort. Gi. B. J. Chem. Soc., Perkin Trams 2 1983. 453-457.
8. Pross. A. Adwances in Phwical Organic Chentistry: Academic Press: London. 1977; vol. 14, pp 69-132.
