DOI QR코드

DOI QR Code

A Mechanistic Study on Addition Reactions of Alicyclic Amines to 3-Butyn-2-one

  • Published : 1998.07.20

Abstract

Second-order rate constants have been measured spectrophotometrically for the addition reaction of a series of alicyclic amines to 3-butyn-2-one to yield their respective enamines at 25.0 'C. The reactivity of the amines increases with increasing the basicity of the amines. However, the Bronsted-type plot obtained exhibits a downward curvature as the basicity of the amines increases, i.e. βnuc decreases from 0.3 for low basic amines (pKa < 9) and to 0.1 for highly basic amines (pKa > 9). Such a curvature in the Bronsted-type plot is clearly indicative of a change in the reaction mechanism or transition state structure. From the corresponding reactions run in D2O, the magnitude of kinetic isotope effect (KIE) has been calculated to be about 0.8 for highly basic amines and 1.21 for weakly basic amines. The difference in the magnitude of KIE also supports a change in the reaction mechanism or transition state structure upon changing the basicity of the amines. Furthermore, the small KIE clearly suggests that H+ transfer is not involved in the rate-determining step, i.e. the addition reaction is considered to proceed via a stepwise mechanism in which the attack of the amines to the acetylene is the rate-determining step. The curvature in the Bronsted-type plot has been attributed to a change in the degree of bond formation between the amine and the acetylene.

Keywords

References

  1. The Chemistry of Carbon Triple Bond Patai, S.(ed.)
  2. J. Org. Chem. v.35 Truce, W. E.;Markley, L. M.
  3. J. Chem. Soc., Chem. Commun. Ruder, S. M.;Kulkarni, V. R.
  4. Organometallics v.7 Seyferth, D.;Wood, T. G.
  5. J. Org. Chem. v.56 Singaram, B.;Rangaishenvi, M. V.;Brown, H. C.;Goralski, C. T.;Hasha, D. L.
  6. Tetrahedron Lett. v.21 Mueller, R. H.;Thompson, M. E.
  7. Zh. Org. Khim. v.19 Breus, V. A.;Neklyudov, S. A.;Solomov, B. N.;Kanovalove, A. I.
  8. J. Heterocyclic Chem. v.21 Sinskey, M. S.;Bass, R. G.
  9. J. Chem. Soc., Perkin Ⅰ Acheson, R. M.;Woollard, J.
  10. Bull. Korean Chem. Soc. v.18 Um, I. H.;Lee, J. S.;Kwon, D. S.
  11. Bull. Korean Chem. Soc. v.14 Um, I. H.;Kim, K. H.;Kwon, D. S.
  12. J. Org. Chem. v.56 Singaram, B.;Goralski, C. T.;Fisher, G. B.
  13. J. Org. Chem. v.44 Marshall, J. A.;Flynn, D. A.
  14. J. Am. Chem. Soc. v.100 Wender, P. A.;Eissenstat, M. A.
  15. J. Org. Chem. v.35 Truce, W. E.;Gorbaty, M. L.
  16. J. Org. Chem. v.37 Truce, W. E.;Tichenor, G. J. W.
  17. Advances in Linear Free Energy Relationships Chapman, N. B.(ed.);Shorter, J.(ed.)
  18. Tetrahedron Lett. v.38 Um, I. H.;Chung, E. K.;Kwon, D. S.
  19. Tetrahedron v.53 Um, I. H.;Hong, Y. J.;Kwon, D. S.
  20. Bull. Korean Chem. Soc. v.17 Um, I. H.;Oh, S. J.;Kwon, D. S.
  21. J. Org. Chem. v.61 Castro, E. A.;Pizarro, M. I.;Santos, J. G.
  22. J. Org. Chem. v.62 Castro, E. A.;Santos, J. G.;Tellez, J.;Umana, M. I.
  23. J. Am. Chem. Soc. v.96 Satterthwait, A. C.;Jencks, W. P.
  24. J. Am. Chem. Soc. v.99 Campbell, P.;Lapinskas, B. A.
  25. Bull. Korean Chem. Soc. v.18 Um, I. H.;Kim, M. J.;Min, J. S.;Kwon, D. S.
  26. Chem. Rev. v.69 Parker, A. J.
  27. Tetrahedron Lett. v.33 Um, I. H.;Lee, G. J.;Yoon, H. W.;Kwon, D. S.
  28. Tetrahedron Lett. v.36 Um, I. H.;Oh, S. J.;Kwon, D. S.
  29. Bull. Korean Chem. Soc. v.13 Um, I. H.;Hahn, G. J.;Lee, G. J.;Kwon, D. S.
  30. Bull. Korean Chem. Soc. v.10 Um, I. H.;Lee, G. J.;Kwon, D. S.
  31. Bull. Korean Chem. Soc. v.17 Um, I. H.;Shin, E. H.;Kwon, D. S.
  32. Handbook of Biochemistry. Selected Data for Molecular Biology Jencks, W. P.;Regenstein, F.;Sober, H. A.(ed.)