Kinetic Study on Michael-type Reactions of 1-Phenyl-2-propyn-1-one with Alicyclic Secondary Amines: Effect of Medium on Reactivity and Mechanism

So-Jeong Hwang, Youn-Min Park, and Ik-Hwan Um*
Department of Chemistry and Nano Science, En:ha Womans University, Seoul 120-750, Korea. "E-mail: ihum@ewha.ac.kr Received July 31, 2008

Abstract

Second-order rate constants (k v) have been measured for Michael-type addition reactions of a series of alicyclic secondary amines to 1-phenyl-2-propyn-1-one (2) in MeCN at $25.0 \pm 0.1^{\circ} \mathrm{C}$. All the amines studied are less reactive in MeCN than in $\mathrm{H}_{2} \mathrm{O}$ although they are more basic in the aprotic solvent by $7-9 \mathrm{p} K_{\text {a }}$ units. The Bronsted-type plot is linear with $\beta_{\text {nuc }}=0.40$, which is slightly larger than that reported previously for the corresponding reactions in $\mathrm{H}_{2} \mathrm{O}$ ($\beta_{\text {ruc }}=0.27$). Product analysis has shown that only E-isomer is produced. Kinetic isotope effect is absent for the reactions of 2 with morpholine and deuterated morpholine (i.e., $k^{\mathrm{H}} / k^{5}=$ 1.0). Thus, the reaction has been concluded to proceed through a stepwise mechanism, in which proton transfer occurs after the rate-determining step. The reaction has been suggested to proceed through a tighter transition state in MeCN than in $\mathrm{H}_{2} \mathrm{O}$ on the basis of the larger $\beta_{n u c}$ in the aprotic solvent. The nature of the transition state has been proposed to be responsible for the decreased reactivity in the aprotic solvent.

Key Words : Michael-type reaction, Concerted mechanism, Stepwise mechanism, Bronsted-type plot, Medium effect

Introduction

Michael-type addition reactions of amines to carboncarbon double bonds conjugated with a strong electron withdrawing group (EWG) have been intensively investigated due to the interests in reaction mechanisms as well as in synthetic applications. These reactions have been reported to proceed through either a concerted or a stepwise mechanism. ${ }^{1+}$ The corresponding reactions of carbon-carbon triple bonds conjugated with a strong EWG have also been studied widely. ${ }^{5-12}$ However, most studies have been focused on the stereochemistry of the reaction products (eg. Z - or E isomer) due to synthetic interests. ${ }^{5-8}$ Only a few mechanistic studies are available. ${ }^{y-12}$ Accordingly, the mechanism has not been fully understood.
We initiated a systematic study for Michael-type addition reactions of a series of aliphatic primary amines to activated acetylene derivatives such as 3-butyn-2-one (1) ${ }^{4}$ and 1-phen-yl-2-propyn-1-one (2). ${ }^{10}$ The reactions were reported to proceed through an addition intermediate with its formation being the rate-determining step (RDS). ${ }^{4.11}$ On the other hand, we have shown that the reactions of $\mathbf{1}$ with substituted anilines proceed through specific acid catalysis and the catalytic effect is remarkable for the reaction with weakly basic aniline (e.g., 4-cyanoaniline). ${ }^{11}$ The reactions of 2 with a series of alicyclic secondary amines were also performed in $\mathrm{H}_{2} \mathrm{O}$ to investigate the effect of amine nature on reactivity and reaction mechanism. ${ }^{12}$ We found that secondary amines are more reactive than isobasic primary amines, but the nature of amines does not influence the reaction mechanism. ${ }^{12}$

1

Scheme 1
Our study has been extended to the reactions of 2 with a series of alicyclic secondary amines in MeCN (Scheme 1). The kinetic data obtained in the current study have been compared with those reported previously for the corresponding reactions performed in $\mathrm{H}_{2} \mathrm{O}$ to investigate the effect of medium on reactivity and reaction mechanism.

Results

All reactions in the current study obeyed pseudo-firstorder kinetics. Pseudo-first-order rate constants ($k_{\text {cossit }}$) were calculated from the equation, $\ln \left(A_{x}-A_{\mathrm{t}}\right)=-k_{\mathrm{obsi}} t+C$. The correlation coefficients were usually higher than 0.9995 . The $k_{0 \text { ussil }}$ values and reaction conditions are summarized in Table 1. The plots of $k_{\text {ubsi }} w$ amine concentrations were linear passing through the origin, indicating that general base catalysis by a second amine molecule is absent. Thus, the rate equation is given by eq. (1).

$$
\begin{equation*}
\text { Rate }=k_{\text {obss }}[\text { substrate }] \text {, where } k_{\text {ots } d}=k_{\mathrm{N}}[\text { amine }] \tag{1}
\end{equation*}
$$

Five different concentrations of amines were used to determine the second-order rate constants $\left(k_{\mathrm{N}}\right)$ from the slope of the linear plots of $k_{\text {obsid }} \mathrm{ws}$. amine concentrations. It is estimated from the replicate runs that the uncertainty in rate constants is less than 3%. The k_{N} values obtained in this way

Table 1. Summary of Kinetic Results for Michael-type Reactions of 1-Phenyl-2-propyn-1-one (2) with Alicyclic Secondary Amines in MeCN at $25.0 \pm 0.1^{\circ} \mathrm{C}$

Entry	[amine]/mM	$k_{00 N} / \mathrm{s}^{-1}$	n^{\prime}
1 piperidine	$10.2-50.8$	$0.338-1.55$	5
2 3-methlpiperidine	$10.0-50.0$	$0.277-1.33$	5
3 piperazine	$10.2-50.8$	$0.307-1.57$	5
4 1-(2-hydroxyethylppiperazine	$10.1-50.3$	$0.0898-0.445$	5
5 1-formylpiperazine	$7.92-35.2$	$0.0447-0.200$	10
6 morpholine	$4.98-22.7$	$0.0106-0.0521$	10

"Number of runs.
Table 2. Summary of Second-order Rate Constants (k_{N}) for Michael-type Reactions of 1-Phenyl-2-propyn-1-one (2) with Alicyclic Secondary Amines in MeCN and in $\mathrm{H}: \mathrm{O}$ (parentheses) at $25.0 \pm 0.1^{\circ} \mathrm{C}$

	Amine	$\mathrm{p} K_{;}^{\prime}$		$k_{\mathrm{N}} / \mathrm{M}^{-1} \mathrm{~s}^{-1}$	
1	piperidine	$18.8^{\prime \prime}$	$(11.22)^{h}$	29.9	
$(41.9)^{d}$					
2	3-methylpiperidine	18.6	$(11.07)^{h}$	26.3	
3	piperazine	$18.2^{\prime \prime}$	$(9.82)^{h}$	31.3	
4	$(44.0)^{d}$				
4	1-(2-hydroxyethyl)piperazine	$17.6^{\prime \prime}$	$(9.38)^{i}$	8.81	
5	1-formylpiperazine	$17.0^{\prime \prime}$	$(7.98)^{\alpha}$	5.82	
6	morpholine	$16.0^{\prime \prime}$	$(8.36)^{d}$		
7	piperazinium ion	-	$(5.68)^{d}$	2.27	

${ }^{\prime} \mathrm{p} K_{\mathrm{d}}$ in MeCN taken from tef. 13a. " $\mathrm{p} K_{\mathrm{d}}$ in $\mathrm{H}_{2} \mathrm{O}$ taken from ref. 13b. "Data taken from ref. 13c. "Rate constants in $\mathrm{H} ० \mathrm{O}$ taken from ref. 12.
are summarized in Table 2 together with the data reported previously for the corresponding reactions performed in $\mathrm{H}_{2} \mathrm{O}$ for comparison purpose.

Discussion

Effect of Amine Basicity on Reactivity and Reaction Mechanism. As shown in Table 2, the second-order rate constant (k_{v}) for the reactions of 1-phenyl-2-propyn-1-one (2) in MeCN decreases as the basicity of amines decreases,

Figure 1. Bronsted-type plots for Michael-type reactions of $1-$ phenyl-2-propyn-1-one (2) with alicyclic secondary amines in $\mathrm{MeCN}(\mathbf{A})$ and in $\mathrm{H} \cdot \mathrm{O}(\mathbf{B})$ at $25.0 \pm 0.1^{\circ} \mathrm{C}$. The identity of the points is given in Table 2.
i.e., k_{N} decreases from $29.9 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ to 8.81 and $2.27 \mathrm{M}^{-1} \mathrm{~s}^{-1}$ as the $\mathrm{p} K_{\mathrm{a}}$ of the conjugate acid of amines decreases from 18.8 to 17.6 and 16.0 , respectively. A similar result is shown for the corresponding reactions performed in $\mathrm{H}_{2} \mathrm{O}$. The effect of amine basicity on reactivity is illustrated in Figure 1A for the reactions in MeCN. The Bronsted-type plot exhibits a good linear correlation with $\beta_{\mathrm{ucc}}=0.40$, when $k \mathrm{v}$ and $\mathrm{p} K_{\mathrm{a}}$ are statistically corrected using p and q (i.e., $p=2$ and $q=1$ except $q=2$ for piperazine). ${ }^{14}$ A similar result is demonstrated in Figure 1B for the reactions performed in $\mathrm{H}_{2} \mathrm{O}$, although the slope of the linear Brensted-type plot ($\beta_{110 c}=0.27$) is slightly smaller for the reactions in $\mathrm{H}_{2} \mathrm{O}$ than for those in MeCN .

The magnitude of $\beta_{\text {nuc }}$ values represents a relative degree of bond formation between the nucleophile and electrophilic center and/or a measure of reaction mechanism. ${ }^{15}$ For example, $\beta_{\text {nuc }}$ has been reported to be 0.8 ± 0.1 for aminolysis of esters which proceeds through a zwitterionic tetrahedral intermediate with its breakdown to products being the ratedetermining step (RDS), while $\beta_{\text {puc }}=0.2-0.3$ for aminolysis which proceeds through rate-determining formation of an intermediate. ${ }^{16-19}$ On the other hand, $\beta_{\text {nuc }}$ has been reported to be 0.5 ± 0.1 for aminolysis of esters which proceeds through a concerted mechanism. ${ }^{16-19}$

Lee and his coworkers have recently reported that additions of anilines to an activated carbon-carbon double bond (e.g., β-stilbenes) in MeCN proceed through a concerted mechanism with a 4 -membered cyclic transition state (TS). One of the evidence provided is that $\beta_{\text {puc }}=0.11-0.343^{3 / 3}$ Similarly, addition reactions of benzylamines to benzyl-idene-3,5-heptadione have been proposed to proceed through a cyclic TS on the basis of the fact that $\beta_{1 p u}=0.23$. ${ }^{30}$

On the contrary, Bernasconi et al. have concluded that additions of primary amines to 1,2,3,4-tetrachloro-6-phenylfulvene proceed through a stepwise mechanism based on the fact that $\beta_{\text {puc }}=0.25^{\text {Ie }}$ Similarly, $\beta_{\text {puc }}$ has been reported to be 0.26 for addition reactions of primary amines to benzylidene Meldrum's acid, which have been proposed to proceed through an intermediate. ${ }^{21}$ Thus, the $\beta_{\text {nik }}$ value of 0.40 obtained in the present reactions appears to be insufficient to determine whether the reaction proceed through a concerted or a stepwise mechanism. Clearly, more conclusive evidence is necessary to determine the reaction mechanism.

To get additional information on the reaction mechanism, product analysis has been performed through ${ }^{1} \mathrm{H} \times \mathrm{M}$ spectroscopy. The current reactions may result in either an E - or a Z-isomer. We found that the coupling constant J between the two hydrogens in the $-\mathrm{CH}=\mathrm{CH}-$ bond of product 3 is 12.6 Hz , a typical coupling constant for an E isomer.

The fact that only the E-isomer is obtained suggests that the reaction may proceed through a 4 -membered cyclic TS (e.g., TS_{1} for a concerted mechanism or TS_{2} for a stepwise mechanism in which proton transfer from the nitrogen atom of the aminium moiety to the negatively charged carbon atom occurs at the RDS). Accordingly, one might expect a large primary kinetic isotope effect (KIE) if the reactions

Figure 2. Plots of $K_{\text {obst }}$ ws. [amine] for the reaction of 2 with morpholine () and deuterated morpholine (O) in MeCN at 25.0 $\pm 0.1^{\circ} \mathrm{C}$.
proceed through TS_{1} or TS_{2}, in which proton transfer is partially advanced in the RDS.

TS_{1}

TS_{2}

TS_{3}

We performed the reaction of 2 with N -deuterated morpholine in MeCN at $25.0 \pm 0.1^{\circ} \mathrm{C}$. It has been found that the KIE is absent (see Figure 2), indicating that the reaction does not proceed through TS_{1} or TS_{2}. Thus, one can conclude that the reaction proceeds through a stepwise mechanism with TS_{3}, in which proton transfer does not occur at all in the RDS.

The above argument can be further supported by the fact that $\beta_{\text {nuc }}=0.40$, an upper limit $\beta_{\text {nuc }}$ value for reactions proceeding through a stepwise mechanism with rate-determining addition of amines to an unsaturated bond (e.g., $\mathrm{C}=\mathrm{C}$ or $\mathrm{C}=\mathrm{O}$ bond). In fact, Bernasconi ef al. have reported that $\beta_{\text {uuc }}=0.22-0.32$ for addition of amines to benzylidene Meldrum's acids ${ }^{2 \mathrm{a}, 2 \mathrm{f}}$ and $1,2,3,4$-tetrachloro-6-phenylfulvene. ${ }^{2 \mathrm{e}}$ A similar $\beta_{\text {nuc }}$ value (e.g., $\beta_{\mathrm{uxc}}=0.2-0.3$) has often been reported for aminolysis of various esters, in which the RDS is the attack of amines on the $\mathrm{C}=\mathrm{O}$ bond to form an addition intermediate. ${ }^{16-19}$

Effect of Medium on Reactivity and Transition-State Structure. It is well known that reactivity of anionic nucleophiles increases greatly on changing reaction medium from $\mathrm{H}_{2} \mathrm{O}$ to a dipolar aprotic solvent such as DMSO or MeCN. In fact, the reactivity of OH^{-}toward 4-nitrophenyl acetate has been reported to increase up to 10^{6} times on changing the medium from $\mathrm{H}_{2} \mathrm{O}$ to $1 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ in DMSO^{20} In contrast, we have shown that reactivity of neutral amines toward esters
increases only slightly on changing the medium from $\mathrm{H}_{2} \mathrm{O}$ to DMSO or MeCN: ${ }^{21}$

As shown in Table 2, all the amines are less reactive in MeCN than in $\mathrm{H}_{2} \mathrm{O}$, although they are more basic in the aprotic solvent by $7-9 \mathrm{p} K_{\mathrm{a}}$ units. ${ }^{13}$ Clearly, the basicity of amines cannot account for the decrease in reactivity of these amines. One might then attribute the decreased reactivity of the amines to the nature of the TS structure. In the preceding section, TS_{3} was proposed as the TS structure in the current reactions on the basis of the experimental results: (1) $\beta_{\text {tuc }}=$ 0.40 , (2) the enaminone 3 obtained is only the E-isomer, and (3) KIE is absent. The partially charged TS_{3} can be stabilized in protic solvents through H -bonding interaction, but it would be destabilized in an aprotic solvent such as MeCN due to the repulsion between the partial negative charge in TS_{3} and the negative dipole end of MeCN . Such destabilization of TS_{3} might be one possible reason why the reactivity of the amines toward 2 decreases on changing the medium from $\mathrm{H}_{2} \mathrm{O}$ to MeCN .

We have recently suggested that the addition reaction of amines to 2 in $\mathrm{H}_{2} \mathrm{O}$ proceeds through $\mathrm{TS}_{3} .^{12}$ The kinetic data for the current reactions in MeCN also support TS_{3}. Thus, the medium change from $\mathrm{H}_{2} \mathrm{O}$ to MeCN does not alter the mechanism of the current Michael-type reactions. However, we found that the $\beta_{\text {nuc }}$ value for the reactions of 2 with amines increases from 0.27 to 0.40 on changing the medium from $\mathrm{H}_{2} \mathrm{O}$ to MeCN , indicating that the reactions proceed through a tighter TS in MeCN than in $\mathrm{H}_{2} \mathrm{O}$.

Conclusions

The present study has allowed us to conclude the following: (1) All the amines in this study are less reactive in MeCN than in $\mathrm{H}_{2} \mathrm{O}$, although they are $7-9 \mathrm{p} K_{\mathrm{a}}$ units more basic in the aprotic solvent. (2) Kinetic isotope effect is absent for the reaction of 2 with morpholine and deuterated morpholine (i.e, $k^{\mathrm{H}} / k^{\mathrm{D}}=1.0$), indicating that the reaction proceeds through a stepwise mechanism in which the proton transfer occurs after the RDS. (3) The Bronsted-type plots are linear with $\beta_{\text {nuk }}=0.40$ in MeCN and $\beta_{\text {nuk }}=0.27$ in $\mathrm{H}_{2} \mathrm{O}$, implying that the TS is slightly tighter in the aprotic solvent. (4) The nature of the TS contributes to the decreased reactivity of amines in the aprotic solvent.

Experimental Section

Materials. 1-Phenyl-2-propyn-1-one (2) was readily prepared from oxidation of 1-phenyl-2-propyn-1-ol, ${ }^{32}$ which was obtained from the reaction of benzaldehyde with ethylmagnesium bromide in dried diethyl ether as reported in the literature. ${ }^{23}$ The purity of 2 was checked by means of the melting point and ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectra. MeC , amines and other chemicals employed were of the highest quality available.

Kinetics. The kinetic studies were performed using a LVvis spectrophotometer equipped with a constant-temperature circulating bath. The reactions were followed by monitoring
the appearance of the enaminone 3 at a fixed wavelength corresponding to the maximum absorption. Typically, the reaction was initiated by adding $5 \mu \mathrm{~L}$ of ca. 0.02 M substrate stock solution in $\mathrm{CH}_{3} \mathrm{CN}$ by a $10 \mu \mathrm{~L}$ syringe to a 10 mm UV cell containing 2.50 mL of the reaction medium and the amine nucleophile. All reactions were carried out under pseudo-first-order conditions in which the amine concentration was at least 20 times greater than that of 2 . The amine stock solution of ca. 0.2 M was prepared in a 25.0 mL volumetric flask under nitrogen. All transfers of solutions were carried out by means of gastight syringes.

Product analysis. The enaminone 3 was identified to be E-isomers only from its ${ }^{1} \mathrm{H}$ NMR spectrum ($J=12.6 \mathrm{~Hz}$).

Acknowledgments. This work was supported by a grant from the Korea Research Foundation (KRF-2005-015C00256). S. J. Hwang and Y. M. Park are also grateful for the BK 21 Scholarship.

References

1. Reviews: (a) Bernasconi, C. F. Acc. Chem. Res. 1987, 20, 301308. (b) Bernasconi, C. F. Tetrahedron 1989, 45, 4017-4090. (c) Kutyrev, A. A.; Moskva, V. V. Riss. Chem. Rev: 1991, 60, $72-$ 106.
2. (a) Ali, M.; Biswas, S.; Rappoport, Z.; Benasconi, C. F. J. Ph: Org. Chem. 2006, 19, 647-653. (b) Bernasconi, C. F.; Ali, M.; Nguyen, K.; Ruddat, V.; Rappoport, Z. J. Org. Chem. 2004, 69, 9248-9254. (c) Bernasconi, C. F.; Leyer, A. E.; Rappoport, Z. J. Org. Chem. 1999, 64, 2897-2902. (d) Bemasconi, C. F.; Zitomer, J. L.; Schuck, D. F. J. Org. Chem. 1992, 57, 1131-1139. (e) Bemasconi, C. F.; Stronach, M. W. J. Am. Chem. Soc. 1990, Il2, 8448-8454.
3. (a) Sung, D. D.; Kang, S. S.; Lee, J. P.; Jung, D. I.; Ryu, Z. H.; Lee, I. Bull. Korean Chem. Soc. 2007, 28, 1670-1674. (b) Ku, M. H.; Oh, H. K.; Ko, S. Bul. Korean Chem. Soc. 2007, 28, 12171220. (c) Oh, H. K.; Lee, J. M.; Sung, D. D.; Lee, l. J. Org. Chem. 2005, 70, 3089-3093. (d) Oh, H. K.; Kim, I. K.; Lee, H. W.; Lee, 1. J. Ofg. Chem. 2004, 69, 3806-3810. (e) Oh, H. K.; Yang, I. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 5391-5395
4. (a) Varghese, B.; Kothari, S.; Banerji, K. K. Int. J. Chem. Kinet. 1999, 31, 245-252. (b) Varghese, B.; Kothari, S.; Baneர்i, K. K. J. Chem. Res. (S) 1998, 422. (c) Jalani, N.; Kothari, S.; Banerji, K. K. Can. J. Chem. 1996, 74, 625-629.
5. (a) Perlmutter, P. Contugate Addition Reactions in Organic Sinfhesis; Pergamon: Oxford, 1992, and references cited therein. (b) Truce, W. E.; Onken, D. W. J. Org. Chem. 1975, 40, 32003208. (c) Truce, W. E.; Heuring, D. L.; Wolf, G C. J. Org. Chem. 1974, 39, 238-244. (d) Truce, W. E.; Tichenor, G. J. J. Org. Chem. 1972, 37, 2391-2396.
6. (a) Sobenina, L. N.; Demenev, A. P.; Mikhaleva, A. I.; Elokhina, V. N.; Stepanova, Z. V.; Mal'kina, A. G.; Ushakov, I. A.; Trofimov, B. A. Russ. J. Org. Chem. 2001, 37, 547-551, (b) Potapov, V. A.; Amosova, S. V.; Starkova, A. A.; Zlunikin, A. R.; Doron'Kina, 1. V.; Beletskaya, 1. P.; Hevesi, L. Sulf. Letf. 2000, 23, 229-238. (c) Trofimov, B. A.; Stepanova, Z. V.; Sobenina, L. N.; Mikhaleva, A. I.; Vakul'skaya, T. I.; Elokhina, V. N.; Ushakov, I. A.; Toryashinova, D.-S. D.; Kositsyna, E. I. Ruts. Chen. Butl. 1999, 48, 1542-1547. (d) Cai, M.; Chen, G; Hao, W.; Wang, D. Simen 2006, 20, 34923494. (e) Ramazani, A.; Kardan, M.; Noshiranzadeh, N. S.m. Commum 2008, 38, 383-390.
7. (a) Sun, X.; Sengupta, S.; Petersen, J. L.; Wang, H.; Lewis, J. P.; Shi, X. Org. Letf. 2007, 9, 4495-4498. (b) Sopbue Fondjo, E.;

Doepp, D.; Henkel, G Tetrahedron 2006, 62,7121-7131. (c) Crisp, G. T.; Millan, M. J. Terchedron 1998, 4, 637-648. (d) Sinsky, M. S.; Bass, R. G. J. Heterocychic Chem. 1984, 21, 759-768.
8. (a) Shen, Z.; Lu, X. Tetrahedron 2006, 63, 10896-10899. (b) Zhao, L.; Lu, X.; Xu, W. J. Org. Chem. 2005, 70, 4059-4063. (c) Xu, Z.; Lu, X. J. Org. Chem. 1998, 63, 5031-5041. (d) Ma, S.; Lu, X.; Li, Z. J. Org. Chem. 1992, 57, 709-713. (e) Ma, S.; Lu, X. I. Chen. Soc., Chem. Commun. 1990, 1643-1644.
9. Lim, I. H.; Lee, J. S.; Yuk, S. M. J. Org. Chem. 1998, 63, $9152-$ 9153.
10. Lim, I. H.; Lee, E. J.; Seok, J. A.; Kim, K. H. J. Org. Chem. 2005, 70, 7530-7536.
11. Lim, I. H.; Lee, E. J.; Min, J. S. Tetrahedron 2001, 57, $9585-9589$.
12. Um, I. H.; Hwang, S. I. Bill. Korean Chem. Soc. 2008, 29, 767-771.
13. (a) Spillane, W. J.; McGrath, P.; Brack, C.; O’Byrne, A. B. J. Org. Chem. 2001, 66, 6313-6316. (b) Jencks, W. P.; Regenstein, F. Handbook of Biochemistrv: Selected Data for Molecular Biolog:; Sober, H. A., Ed.; The Chemical Rubber Co.: 1968. (c) Castro, E. A.; Santos, J. G.; Tellez, J.; Umana, M. I. J. Org. Chen. 1997, 62, 6568.
14. Bell, R. P. The Proton in Chemistm; Methuen: London, 1959; p 159.
15. Advanced in Linear Free Energr Relationships; Chapman, N. B.; Shorter, J., Eds.; Plenum: London, 1972.
16. (a) Jencks, W. P. Chem. Rev: 1985, 85, 511-527. (b) Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. (c) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Longman: Harlow, U.K., 1997; Chapter 7.
17. (a) Castro, E. A.; Aliaga, M.; Santos, J. G. J. Phw: Org. Chem. 2008, 21, 271. (b) Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Leis, J. R.; Garcia-Rio, L.; Santos, J. G. J. Ph: Org. Chem. 2008, 21, 102. (c) Castro, E. A.; Echevarria, G. R.; Opazo, A.; Robert, P. S.; Santos, J. G. J. Phy: Org. Chem. 2008, 21, 62. (d) Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, I. G Terrahedron 2006, 62, 4863-4869. (e) Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.: Garcia-Rio, L.: Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562. (f) Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 76, 80888092. (g) Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem. 2005, 70, 1754-1760.
18. (a) Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. D.; Lee, I. Budl. Korean Chem. Soc. 2006, 27, 1086. (b) Sung, D. D.; Koo, l. S.; Yang, K.; Lee, 1. Chem. Ph: Left. 2006, 436, 280-284. (c) Hwang, J.; Yang, K.; Koo, I. S.; Sung, D. D.; Lee, I. Bull. Korem Chen. Soc. 2006, 27, 733-738. (d) Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Oig. Chem. 2005, $70,5624-5629$.
19. (a) Lm, I. H.; Yoon, S. R.; Park, H. R.; Han, H. J. Org. Bionol. Chem. 2008, 6, 1618-1624. (b) Um, I. H.; Min, S. W.; Dust, J. M. J. Org. Chem. 2007, 72, 8797-8803. (c) Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 48164821. (d) Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829. (e) Um, I. H.; Chun, S. M.; Akhtar, K. Budf. Korean Chem. Soc. 2007, 28, 220-224. (f) Lm, 1. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821. (g) Um, l. H.; Jeon, S. E.; Seok, J. A. Chem. Eif. J. 2006, 12, 1237-1243. (h) Um, I. H.; Kim, E. J.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306. (i) Lin, I. H.; Lee, I. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Oig. Chem. 2005, 70, $4980-4987$.
20. Goitein, R.; Bruice, T. C. J. Phis. Chem. 1972, 76, 432-434.
21. (a) Lm, I. H.; Lee, E. J.; Jeon, S. E. J. Phes. Org. Chem. 2002, I5, 561-565. (b) Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur J. 2006, 12, 1237-1243.
22. Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L. J. Chem. Soc. 1946, 39-45.
23. (a) Bagley, M. C.; Dale, J. W.; Ohnesorge, M.; Xiong, X.; Bower, J. J. Comb. Chem. 2003, 5, 41-44. (b) McMullen, C. H.; Stirling, C. T. M. J. Chen. Soc. 1966, 1221-1223.

