• Title/Summary/Keyword: Breakdown voltages

Search Result 248, Processing Time 0.028 seconds

The Effect of Ion Implantation on the Barrier Height in PtSi-nSi Schottky Diode (PtSi-nSi 쇼트키 다이오드에서 이온 주입이 장벽높이의 변화에 미치는 영향)

  • Lee, Yong Jae;Lee, Moon Key;Kim, Bong Ryul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.5
    • /
    • pp.712-718
    • /
    • 1986
  • A shallow n+ layer of implanted phosphorus was used to lower the barrier height of PtSinSi schottky diodes. The reduction of barrier height of the forward turn-on voltages from 400mV to 180mV of the forward was followed by implantation of phosphorus at 35KeV with an ion dose of 8.0x10**12 atoms/cm\ulcornerand was activated at 925\ulcorner for 30min in dry O2. The test result showed that, as the ion-implanted dose increased, the forward turn-on voltage and reverse breakdown voltage were linearly decreased, but the saturation current and ideality factor(n) were linearly increased.

  • PDF

The Characteristics of the Output Voltage Ferroelectrics for High Voltages Pulse Generators (고전압 펄스 발생기를 위한 강유전체의 전압 출력 특성)

  • Jang, Dong-Gwan;Choi, Sun-Ho;Hwang, Sunl-Mook;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1408-1412
    • /
    • 2013
  • High power pulse generating technology is to accumulate the energy for relatively long and then to create a strong force by emitting the energy very fast. High power pulse generating technology has recently been using in various fields like environments, industry, research, military and so on. Numerous studies about high power pulse generators have already been performed and commercialized in various conditions. However, in aspect of their size and weight, it is hard to carry the generators which currently have been developed. For these reasons, din nations like America or Russia, the researches have been performed for Ferroelectric Generators(FEG), which have relatively simple structure and are economical. To realize the ferroelectric generator, in this study, we selected the PZTs which have different physical properties respectively, and then shocked them using explosives. The PZT samples with volumes of $0.31{\sim}0.94cm^3$ were depolarized by shocked and produced the waveform that have peak voltages of 4.28 ~ 15kV. The lowest relative permittivity sample generated much higher peak voltage. And sudden voltage drops which seem to be caused by dielectric breakdown were observed in some experiments using low young's modulus samples. Also, increase in thickness led to increase in peak voltage, but the ratio of the voltage rise did not reach the ration of the thickness increase.

Analysis of SCR, MVSCR, LVTSCR With I-V Characteristic and Turn-On-Time (SCR, MVSCR, LVTSCR의 Turn-on time 및 전기적 특성에 관한 연구)

  • Lee, Joo-Young
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.295-298
    • /
    • 2016
  • In this paper, we analysed the properties of the conventional ESD protection devices such as SCR, MVSCR, LVTSCR. The electrical characteristics and the turn-on time properties are simulated by Synopsys T-CAD simulator. As the results, the devices have the holding voltages between 2V and 3V, and the trigger voltage of about 20V with SCR, of about 12V with MVSCR, of about 9V with LVTSCR. The results of the simulation for the turn-on time properties are 2.8ns of SCR, 2.2ns of MVSCR, 2.0ns of LVTSCR. Thus, we prove that LVTSCR has the shortest turn-on time. However, the second breakdown currents(It2) of the devices are 7.7A of SCR, 5.5A of MVSCR, 4A of LVTSCR. This different properties have to be adapted by the operation voltages for I/O Clamps.

Characteristics of Ultrasonic Signals Caused by Corona Discharge in Air (코로나방전에 의한 공중(空中)초음파 신호 특성)

  • 이상우;김인식;이동인;이광식;이동희
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.4
    • /
    • pp.38-46
    • /
    • 1999
  • Measurerments of ultrasonic signals caused by corona discharges were perforrred by using an ultrasonic meeasurerment technique to analyze the deve1qxrent states of coronas in a high-voltage power apparatus. We also examined the relationship between discharge magnitude and ultrasonic pulse number to diagnose the deterioration of electrical insulation by corona discharges. From these results, it was found that ultrasonic signals due to corona discharges can be firstly detected at the peak value of positive polarities prior to the breakdown voltages, and the magnitude of ultrasonic signals was closely related to the current pulses by the corona discharges when ac voltages were gradually raised, and it appeared that ultrasonic pulse number was proportional to discharge magnitude. Attenuation, tirre-delaying and directivity charocteristics of ultrasonic signals propagated to air by using ultrasonic oscillation and receiving systems are feJXlrt.ed as a basic data of ultrasonic measurements in out-door HV apparatus.aratus.

  • PDF

Electrostatic discharge simulation of tunneling magnetoresistance devices (터널링 자기저항 소자의 정전기 방전 시뮬레이션)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • Electrostatic discharge characteristics were studied by connecting human body model (HBM) with tunneling magnetoresistance (TMR) device in this research. TMR samples were converted into electrical equivalent circuit with HBM and it was simulated utilizing PSPICE. Discharge characteristics were observed by changing the component values of the junction model in this equivalent circuit. The results show that resistance and capacitance of the TMR junction were determinative components that dominate the sensitivity of the electrostatic discharge(ESD). Reducing the resistance oi the junction area and lead line is more profitable to increase the recording density rather than increasing the capacitance to improve the endurance for ESD events. Endurance at DC state was performed by checking breakdown and failure voltages for applied DC voltage. HBM voltage that a TMR device could endure was estimated when the DC failure voltage was regarded as the HBM failure voltage.

Potential Reduction and Energy Dispersion Due to Ionization Around the Submerged Ground Rod (수중에 잠긴 접지전극 주변에서의 이온화에 의한 전위저감 및 에너지방출)

  • Choi, Jong-Hyuk;Ahn, Sang-Duk;Yang, Soon-Man;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.92-99
    • /
    • 2009
  • Deeply-driven ground rod in the rainy season may contact with rainwater and ground water. When surge voltages are applied to the submerged ground rods, the ionization around the ground rods are occurred. Ionization in soil and/or water is affected in dynamic performance of ground rod systems. This work aims at studying the transient performance of ground rod system under impulse voltage using scale model in an electrolytic tank. The potential reduction and energy dispersion caused by ionization were treasured and quantitatively analyzed using the Matlab Program. As a result, the peak voltage at the terminal of ground rod was varied with water resistivity and charging voltage of Marx generator. The potential at the terminal of the ground rod was approximately reduced to a half of the applied voltage just below breakdown voltage. Also the energy more than half of the applied energy was dispersed through the ground rod due to ionization just below breakdown voltage.

Extension of the Site Binding Model for Ion Sensing Mechanism of ISFET and Its Application to the Hydrogen Ion Sensing $Si_3N_4$ Membrane (ISFET 이온감지기구의 Site Binding 모형 확장과 그 $Si_3N_4$ 수소이온 감지막에의 적용)

  • Seo, Hwa-Il;Kwon, Dae-Hyuk;Lee, Jong-Hyun;Sohn, Byung-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1358-1366
    • /
    • 1988
  • The dual dielectric films have been grown on single-crystalline silicon substrates with the thickness ranging from 125A to 180A at various gas and temperature conditions by using rapid thermal process that included independent nitridation step. The film characteristics and their dependence on the contents of the hydrochloric gas and the processing time have been studied. By the addition of the hydrochloric gas, the initial oxide thickness was significantly changed, but after sequential nitridation processes the thickness of the films was nevertheless a little bit varied within 10A. All the samples of the dual dielectric films show the increased breakdown voltages in proportion to the additive contents of the hydrochloric gas and also show the higher breakdown strengths than the thermal oxide and nitrided oxide films grown by the conventional furnance process or the rapid thermal nitridation process that was composed of the dependent nitridation cycles.

  • PDF

Effects of the Contents of Hydrochloric Gas on the Electrical Properties of the RTO/RTN Dual Dielectric Films (HCI 첨가에 의한 RTO/RTN 이중 절연박막의 전기적 특성 변화)

  • Kim, Youn-Tae;Park, Sung-Ho;Bae, Nam-Jin;Kim, Bo-Woo;Ma, Dong-Sung
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.11
    • /
    • pp.1350-1357
    • /
    • 1988
  • The dual dielectric films have been grown on single-crystalline silicon substrates with the thickness ranging from 125A to 180A at various gas and temperature conditions by using rapid thermal process that included independent nitridation step. The film characteristics and their dependence on the contents of the hydrochloric gas and the processing time have been studied. By the addition of the hydrochloric gas, the initial oxide thickness was significantly changed, but after sequential nitridation processes the thickness of the films was nevertheless a little bit varied within 10A. All the samples of the dual dielectric films show the increased breakdown voltages in proportion to the additive contents of the hydrochloric gas and also show the higher breakdown strengths than the thermal oxide and nitrided oxide films grown by the conventional furnance process or the rapid thermal nitridation process that was composed of the dependent nitridation cycles.

  • PDF

Linearity Enhancement of Partially Doped Channel GaAs-based Double Heterostructure Power FETs (부분 채널도핑된 GaAs계 이중이종접합 전력FET의 선형성 증가)

  • Kim, U-Seok;Kim, Sang-Seop;Jeong, Yun-Ha
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.83-88
    • /
    • 2002
  • To increase the device linearities and the breakdown-voltages of FETs, $Al_{0.25}$G $a_{0.75}$As/I $n_{0.25}$G $a_{0.75}$As/A $l_{0.25}$G $a_{0.75}$As partially doped channel FET(DCFET) structures are proposed. The metal insulator-semiconductor(MIS) like structures show the high gate-drain breakdown voltage(-20V) and high linearities. We propose a partially doped channel structure to enhance the device linearity to the homogeneously doped channel structure. The physics of partially doped channel structure is investigated with 2D device simulation. The devices showed the small ripple of the current cut-off frequency and the power cut-off frequency over the wide bias range. bias range.

A Design Method on Power Sensefet to Protect High Voltage Power Device (고전압 전력소자를 보호하기 위한 센스펫 설계방법)

  • Kyoung, Sin-Su;Seo, Jun-Ho;Kim, Yo-Han;Lee, Jong-Seok;Kang, Ey-Goo;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.6-7
    • /
    • 2008
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The sense FET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 450V power MOSFET devices by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5\times10^{14}cm^{-3}$, size of $600{\mu}m^2$ with 4.5 $\Omega$, and off-state leakage current below 50 ${\mu}A$. We offer the layout of the proposed sense FET to process actually. The offerd design and optimization methods is meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.

  • PDF