• 제목/요약/키워드: Bounded positive solution

검색결과 38건 처리시간 0.019초

POSITIVE SOLUTION FOR A CLASS OF NONLOCAL ELLIPTIC SYSTEM WITH MULTIPLE PARAMETERS AND SINGULAR WEIGHTS

  • AFROUZI, G.A.;ZAHMATKESH, H.
    • Journal of applied mathematics & informatics
    • /
    • 제35권1_2호
    • /
    • pp.121-130
    • /
    • 2017
  • This study is concerned with the existence of positive solution for the following nonlinear elliptic system $$\{-M_1(\int_{\Omega}{\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^pdx)div({\mid}x{\mid}^{-ap}{\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)\\{\hfill{120}}={\mid}x{\mid}^{-(a+1)p+c_1}\({\alpha}_1A_1(x)f(v)+{\beta}_1B_1(x)h(u)\),\;x{\in}{\Omega},\\-M_2(\int_{\Omega}{\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^qdx)div({\mid}x{\mid}^{-bq}{\mid}{\nabla}v{\mid}^{q-2}{\nabla}v)\\{\hfill{120}}={\mid}x{\mid}^{-(b+1)q+c_2}\({\alpha}_2A_2(x)g(u)+{\beta}_2B_2(x)k(v)\),\;x{\in}{\Omega},\\{u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}$ is a bounded smooth domain of ${\mathbb{R}}^N$ with $0{\in}{\Omega}$, 1 < p, q < N, $0{\leq}a$ < $\frac{N-p}{p}$, $0{\leq}b$ < $\frac{N-q}{q}$ and ${\alpha}_i,{\beta}_i,c_i$ are positive parameters. Here $M_i,A_i,B_i,f,g,h,k$ are continuous functions and we discuss the existence of positive solution when they satisfy certain additional conditions. Our approach is based on the sub and super solutions method.

EXISTENCE OF THE POSITIVE SOLUTION FOR THE NONLINEAR SYSTEM OF SUSPENSION BRIDGE EQUATIONS

  • Jung, Tacksun;Choi, Q-Heung
    • 충청수학회지
    • /
    • 제21권3호
    • /
    • pp.339-345
    • /
    • 2008
  • We prove the existence of the positive solution for the nonlinear system of suspension bridge equations with Dirichlet boundary condition and periodic condition $$\{u_{tt}+u_{xxxx}+av^+=1+{\epsilon}_1h_1(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,\\v_{tt}+v_{xxxx}+bu^+=1+{\epsilon}_2h_2(x,t)\text{ in }(-\frac{\pi}{2},\frac{\pi}{2}){\times}R,$$ where $u^+={\max}\{u,0\},\;{\epsilon}_1,\;{\epsilon}_2$ are small numbers and $h_1(x,t)$, $h_2(x,t)$ are bounded, ${\pi}$-periodic in t and even in x and t and ${\parallel}h_1{\parallel}={\parallel}h_2{\parallel}=1$.

  • PDF

MULTIPLICITY OF POSITIVE SOLUTIONS OF A SCHRÖDINGER-TYPE ELLIPTIC EQUATION

  • Eunkyung Ko
    • East Asian mathematical journal
    • /
    • 제40권3호
    • /
    • pp.295-306
    • /
    • 2024
  • We investigate the existence of multiple positive solutions of the following elliptic equation with a Schrödinger-type term: $$\begin{cases}-{\Delta}u+V(x)u={\lambda}f(u){\quad} x{\in}{\Omega},\\{\qquad}{\qquad}{\quad}u=0, {\qquad}\;x{\in}\partial{\Omega},\end{cases}$$, where 0 ∈ Ω is a bounded domain in ℝN , N ≥ 1, with a smooth boundary ∂Ω, f ∈ C[0, ∞), V ∈ L(Ω) and λ is a positive parameter. In particular, when f(s) > 0 for 0 ≤ s < σ and f(s) < 0 for s > σ, we establish the existence of at least three positive solutions for a certain range of λ by using the method of sub and supersolutions.

SYMMETRY AND MONOTONICITY OF SOLUTIONS TO FRACTIONAL ELLIPTIC AND PARABOLIC EQUATIONS

  • Zeng, Fanqi
    • 대한수학회지
    • /
    • 제58권4호
    • /
    • pp.1001-1017
    • /
    • 2021
  • In this paper, we first apply parabolic inequalities and a maximum principle to give a new proof for symmetry and monotonicity of solutions to fractional elliptic equations with gradient term by the method of moving planes. Under the condition of suitable initial value, by maximum principles for the fractional parabolic equations, we obtain symmetry and monotonicity of positive solutions for each finite time to nonlinear fractional parabolic equations in a bounded domain and the whole space. More generally, if bounded domain is a ball, then we show that the solution is radially symmetric and monotone decreasing about the origin for each finite time. We firmly believe that parabolic inequalities and a maximum principle introduced here can be conveniently applied to study a variety of nonlocal elliptic and parabolic problems with more general operators and more general nonlinearities.

EXISTENCE OF SOLUTIONS FOR BOUNDARY BLOW-UP QUASILINEAR ELLIPTIC SYSTEMS

  • Miao, Qing;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제28권3_4호
    • /
    • pp.625-637
    • /
    • 2010
  • In this paper, we are concerned with the quasilinear elliptic systems with boundary blow-up conditions in a smooth bounded domain. Using the method of lower and upper solutions, we prove the sufficient conditions for the existence of the positive solution. Our main results are new and extend the results in [Mingxin Wang, Lei Wei, Existence and boundary blow-up rates of solutions for boundary blow-up elliptic systems, Nonlinear Analysis(In Press)].

NEGATIVE SOLUTION FOR THE SYSTEM OF THE NONLINEAR WAVE EQUATIONS WITH CRITICAL GROWTH

  • Jung, Tacksun;Choi, Q.-Heung
    • Korean Journal of Mathematics
    • /
    • 제16권1호
    • /
    • pp.41-49
    • /
    • 2008
  • We show the existence of a negative solution for the system of the following nonlinear wave equations with critical growth, under Dirichlet boundary condition and periodic condition $$u_{tt}-u_{xx}=au+b{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha-1}{\upsilon}_+^{\beta}+s{\phi}_{00}+f,\\{\upsilon}_{tt}-{\upsilon}_{xx}=cu+d{\upsilon}+\frac{2{\alpha}}{{\alpha}+{\beta}}u_+^{\alpha}{\upsilon}_+^{{\beta}-1}+t{\phi}_{00}+g,$$ where ${\alpha},{\beta}>1$ are real constants, $u_+={\max}\{u,0\},\;s,\;t{\in}R,\;{\phi}_{00}$ is the eigenfunction corresponding to the positive eigenvalue ${\lambda}_{00}$ of the wave operator and f, g are ${\pi}$-periodic, even in x and t and bounded functions.

  • PDF

EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

  • Chang, Yanxun;Zhang, Xiaoxiao
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.703-722
    • /
    • 2021
  • Let G = (V, E) be a connected locally finite and weighted graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear equation -∆pu + h|u|p-2u = f(x, u) on G, where p > 2, h, f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator 𝓛m,p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.

THE EXISTENCE, NONEXISTENCE AND UNIQUENESS OF GLOBAL POSITIVE COEXISTENCE OF A NONLINEAR ELLIPTIC BIOLOGICAL INTERACTING MODEL

  • Kang, Joon Hyuk;Lee, Jungho;Oh, Yun Myung
    • Korean Journal of Mathematics
    • /
    • 제12권1호
    • /
    • pp.77-90
    • /
    • 2004
  • The purpose of this paper is to give a sufficient condition for the existence, nonexistence and uniqueness of coexistence of positive solutions to a rather general type of elliptic competition system of the Dirichlet problem on the bounded domain ${\Omega}$ in $R^n$. The techniques used in this paper are upper-lower solutions, maximum principles and spectrum estimates. The arguments also rely on some detailed properties for the solution of logistic equations. This result yields an algebraically computable criterion for the positive coexistence of competing species of animals in many biological models.

  • PDF

EXTINCTION AND NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSIVE p-LAPLACE EQUATION WITH A NONLOCAL SOURCE

  • Han, Yuzhu;Gao, Wenjie;Li, Haixia
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.55-66
    • /
    • 2014
  • In this paper, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive p-Laplace equation $u_t=div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+a{\int}_{\Omega}u^q(y,t)dy$, 1 < p < 2, in a bounded domain ${\Omega}{\subset}R^N$ with $N{\geq}1$. More precisely, it is shown that if q > p-1, any solution vanishes in finite time when the initial datum or the coefficient a or the Lebesgue measure of the domain is small, and if 0 < q < p-1, there exists a solution which is positive in ${\Omega}$ for all t > 0. For the critical case q = p-1, whether the solutions vanish in finite time or not depends crucially on the value of $a{\mu}$, where ${\mu}{\int}_{\Omega}{\phi}^{p-1}(x)dx$ and ${\phi}$ is the unique positive solution of the elliptic problem -div(${\mid}{\nabla}{\phi}{\mid}^{p-2}{\nabla}{\phi}$) = 1, $x{\in}{\Omega}$; ${\phi}(x)$=0, $x{\in}{\partial}{\Omega}$. This is a main difference between equations with local and nonlocal sources.

EXISTENCE OF BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS

  • Wu, Mingzhu;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1119-1132
    • /
    • 2009
  • In this paper, we consider the quasilinear elliptic system $\\div(|{\nabla}u|^{p-2}{\nabla}u)=u(a_1u^{m1}+b_1(x)u^m+{\delta}_1v^n),\;\\div(|{\nabla}_v|^{q-2}{\nabla}v)=v(a_2v^{r1}+b_2(x)v^r+{\delta}_2u^s)$, in $\Omega$ where m > $m_1$ > p-2, r > $r_1$ > q-, p, q $\geq$ 2, and ${\Omega}{\subset}R^N$ is a smooth bounded domain. By constructing certain super and subsolutions, we show the existence of positive blow-up solutions and give a global estimate.

  • PDF