• Title/Summary/Keyword: Boundary Method

Search Result 7,396, Processing Time 0.033 seconds

Prediction of crack trajectory by the boundary element method

  • Bush, M.B.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.6
    • /
    • pp.575-588
    • /
    • 1999
  • A boundary element method is applied to the analysis of crack trajectory in materials with complex microstructure, such as discontinuously reinforced composite materials, and systems subjected to complex loading, such as indentation. The path followed by the crack(s) has non-trivial geometry. A study of the stress intensity factors and fracture toughness of such systems must therefore be accompanied by an analysis of crack trajectory. The simulation is achieved using a dual boundary integral method in planar problems, and a single boundary integral method coupled with substructuring in axisymmetric problems. The direction of crack propagation is determined using the maximum mechanical energy release rate criterion. The method is demonstrated by application to (i) a composite material composed of components having the elastic properties of aluminium (matrix) and silicon carbide (reinforcement), and (ii) analysis of contact damage induced by the action of an indenter on brittle materials. The chief advantage of the method is the ease with which problems having complex geometry or loading (giving rise to complex crack trajectories) can be treated.

REMOVAL OF HYPERSINGULARITY IN A DIRECT BEM FORMULATION

  • Lee, BongJu
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.425-440
    • /
    • 2010
  • Using Green's theorem, elliptic boundary value problems can be converted to boundary integral equations. A numerical methods for boundary integral equations are boundary elementary method(BEM). BEM has advantages over finite element method(FEM) whenever the fundamental solutions are known. Helmholtz type equations arise naturally in many physical applications. In a boundary integral formulation for the exterior Neumann there occurs a hypersingular operator which exhibits a strong singularity like $\frac{1}{|x-y|^3}$ and hence is not an integrable function. In this paper we are going to remove this hypersingularity by reducing the regularity of test functions.

THE BOUNDARY ELEMENT METHOD FOR POTENTIAL PROBLEMS WITH SINGULARITIES

  • YUN, BEONG IN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1999
  • A new procedure of the boundary element method(BEM),say, singular BEM for the potential problems with singularities is presented. To obtain the numerical solution of which asymptotic behavior near the singularities is close to that of the analytic solution, we use particular elements on the boundary segments containing singularities. The Motz problem and the crack problem are taken as the typical examples, and numerical results of these cases show the efficiency of the present method.

  • PDF

The Tolerance Stack Analysis of the Model Involving Position Tolerance (위치공차를 포함한 모형의 틈새분석 연구)

  • Kim, Young-Nam;Yoon, Kwang-Ho;Chang, Sung-Ho
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.1
    • /
    • pp.36-43
    • /
    • 2005
  • It is the basic requirement of design process of parts assembly to specify geometric dimensions and tolerances of product characteristics. Among them, tolerance stack analysis is one of the important methods to specify tolerance zone. Tolerance stack analysis is to calculate gap using tolerances which includes geometric and coordinate dimensions. In this study, we suggested more general method called the virtual method to analyze tolerance stack. In virtual method, tolerance zone is formed by combination of dimensional tolerance, geometric tolerance and bonus tolerance. Also tolerance zone is classified by virtual boundary condition and resultant boundary condition. So gap can be defined by combination of virtual boundary and/or resultant boundary. Several examples are used to show the effectiveness of new method comparing to other methods.

NUMERICAL METHOD FOR SINGULAR PERTURBATION PROBLEMS ARISING IN CHEMICAL REACTOR THEORY

  • Andargie, Awoke
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.411-423
    • /
    • 2010
  • In this paper, a numerical method for singular perturbation problems arising in chemical reactor theory for general singularly perturbed two point boundary value problems with boundary layer at one end(left or right) of the underlying interval is presented. The original second order differential equation is replaced by an approximate first order differential equation with a small deviating argument. By using the trapezoidal formula we obtain a three term recurrence relation, which is solved using Thomas Algorithm. To demonstrate the applicability of the method, we have solved four linear (two left and two right end boundary layer) and one nonlinear problems. From the results, it is observed that the present method approximates the exact or the asymptotic expansion solution very well.

Numerical Solutions of Multi-Dimensional Solidification/Melting Problems by the Dual Reciprocity Boundary Element Method

  • Jo, Jong-Chull;Shin, Won-Ky
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.617-624
    • /
    • 1997
  • This Paper Presents an effective and simple procedure for the simulation of the motion of the solid-liquid interfacial boundary and the transient temperature field during phase change process. To accomplish this purpose, an iterative implicit solution algorithm has been developed by employing the dual reciprocity boundary element method. The dual reciprocity boundary element approach provided in this paper is much simpler than the usual boundary element method applying a reciprocity principle and an available technique for dealing with domain integral of boundary element formulation simultaneously. The effectiveness of the present analysis method have been illustrated through comparisons of the calculation results of an example with its semi-analytical or other numerical solutions where available.

  • PDF

Smooth Boundary Topology Optimization Using B-spline and Hole Generation

  • Lee, Soo-Bum;Kwak, Byung-Man;Kim, Il-Yong
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.11-20
    • /
    • 2007
  • A topology optimization methodology, named "smooth boundary topology optimization," is proposed to overcome the shortcomings of cell-based methods. Material boundary is represented by B-spline curves and their control points are considered as design variables. The design is improved by either creating a hole or moving control points. To determine which is more beneficial, a selection criterion is defined. Once determined to create a hole, it is represented by a new B-spline and recognized as a new boundary. Because the proposed method deals with the control points of B-spline as design variables, their total number is much smaller than cell-based methods and it ensures smooth boundaries. Differences between our method and level set method are also discussed. It is shown that our method is a natural way of obtaining smooth boundary topology design effectively combining computer graphics technique and design sensitivity analysis.

Permeable Breakwaters Analysis by Using Boundary Element Method (경계요색법(境界要索法)에 의한 투과잠제(透過潛堤)의 해석기법(解析技法))

  • Kim, Nam Hyeong;Takikawa, Kiyoshi;Choi, Han Kuv
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.69-72
    • /
    • 1990
  • In this paper the numerical method for the study of wave reflection from and transmission through submerged permeable breakwaters using the boundary element method is developed. The numerical analysis technique is based on the wave pressure function instead of velocity potential because it is difficult to define the velocity potential in the each region arising the energy dissipation. Also, the non-linear energy dissipation within the submerged porous structure is simulated by introducing the linear dissipation coefficient and the tag mass coefficient equivalent to the non-linear energy dissipation. For the validity of this analysis technique, the numerical results obtained by the present boundary element method are compared with those obtained by the other computation method. Good agreements are obtained and so the validity of the present numerical analysis technique is proved.

  • PDF

Application of Initial Stress Method on Elasto-plastic Problem in Boundary Element Method (경계요소법의 탄소성문제에 대한 초기응력법의 적용)

  • Soo, Lyong-Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.6 s.150
    • /
    • pp.683-692
    • /
    • 2006
  • The BEM, known as solving boundary value problems, could have some advantages In solving domain problems which are mostly solved by FEM and FDM. Lately, in the elastic-plastic nonlinear problems, BEM could provide the subdomain approach for the region where the plastic deformation could occur and the unknown nodal displacement of this region are added as the unknown of the boundary integral equation for this approach. In this paper, initial stress method was used to establish the formulation of such BEM approach. And a simple rectangular plate having a circular hole was analyzed to verify the suggested method and the result is compared with that from FEM. It is shown that the result of two methods are showing similar stress-strain curves at the root of perforated plate and furthermore the plastic deformation obtained by BEM shows more reasonable behavior than that of FEM.

Ratcheting boundary of pressurized pipe under reversed bending

  • Chen, Xiaohui;Chen, Xu;Li, Zifeng
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.313-323
    • /
    • 2019
  • Ratcheting boundary is firstly determined by experiment, elastic-plastic finite element analysis combined with C-TDF and linear matching method, which is compared with ASME/KTA and RCC-MR. Moreover, based on elastic modulus adjustment procedure, a novel method is proposed to predict the ratcheting boundary for a pressurized pipe subjected to constant internal pressure and cyclic bending loading. Comparison of ratcheting boundary of elbow pipe determined by the proposed method, elastic-plastic finite element analysis combined with C-TDF and linear matching method, which indicates that the predicted results of the proposed method are in well agreement with those of linear matching method.