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Abstract

This paper presents an effective and simple procedure for the simulation of the
motion of the solid-liquid interfacial boundary and the transient temperature field
during phase change process. To accomplish this purpose, an iterative implicit
solution algorithm has been developed by employing the dual reciprocity boundary
element method. The dual reciprocity boundary element approach provided in this
paper is much simpler than the usual boundary element method applying a
reciprocity principle and an available technique for dealing with domain integral of
boundary element formulation simultaneously. The effectiveness of the present
analysis method have been illustrated through comparisons of the calculation results
of an example with its semi-analytical or other numerical solutions where available.

I. Introduction

Transient heat transfer problems with phase changes (Stefan problems) occur in many
engincering situations, including potential core melting and solidification during pressurized
water reactor severe accidents, ablation of thermal shields and many others. Such problems
are inherently nonlinear duc to the condition on the interfacial moving boundary, resulting in
significant theoretical difficulties. Thus various numerical methods such as finite differences,
finite elements, finite volumes or boundary elements[1] have been proposed to deal with those
problems. Since one-dimensional Stefan problem was studied with the boundary element
method(BEM) by Shaw([2] and Wrobel[3], many investigators[4-12] dealt with two-dimensional
BEM formulations for the Stefan problem as quasi-static. However, their approach lacks in
generality and introduces further approximations compromising the accuracy of the results.
O'Neill[13] gave a general integral formulation for quasi-static phase problems. Zabaras and
Mukherjee[14,15] and Delima-Silva Jr. and Wrobel[16-18] extended the works of O'Neill[13]
to two-dimensional transient problems in different articles using convolution-type integrals.

This paper presents a dual reciprocity boundary element (DRBEM) formulation for
multi-dimensional heat transfer problems either with solidification or melting process, using a
time-dependent fundamental solution and a predictor-comector iterative scheme for tracking the
moving solid-liquid interfacial boundary [18]. The DRBEM formulation for the Stefan
problems presented in this paper does not involve any integral terms, thus resulting in easier
numerical implementation. The effectiveness of the present method is examined by comparing
the calculation results with the existing solutions for some examples where available.
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II. Mathematical Formulation for Multi-Dimensional Solidification/Melting Problems

Consider a situation that a liquid at an initially uniform temperature 7; (equal to or
above the melting point T,), occupying a region with a fixed boundary r,, is cooled to a
temperature lower than the melting point by heat exchange at the outer boundary I, with an
environmental medium as shown in Fig. 1-a. Initially, solidification of the liquid starts all
around the outer boundary I, and the interfacial boundary I, between the solid and liquid

phases is moving inwards as the latent heat of fusion is liberated. In similar manner let's
consider another situation that a solid at an initially uniform temperature 7; (below the

melting point T, ), forming a region with a fixed boundary r,, is heated up to the melting
temperature by heat exchange at the outer boundary I, with an environmental medium as
shown in Fig. 1-b. In this case, as the heating progresses , eventually the outer boundary I,

reaches the phase change temperature and melting of the solid starts all around the boundary
r,, and then the interfacial boundary I, between the liquid and solid phases is moving

inwards as the latent heat of fusion is absorbed.
Assuming Constant material parameters and no motion of liquid, the govemning differential
equations for both cases can be expressed as follows:

vT(x 0+ Lalx.p= LD egq M

aT,(x.
VT (x D+ h e (x )= L 2TLRD

where the subscripts s and [ are used to stand for the solid and liquid phases, respectively,
Q.(») denotes the solid domain at time t, T x ,s is the temperature at the point x €QJ(J,
2{ x ,p is the rate of heat generation in the solid region at time I, x contains the cartesian
coordinates x, y and 2z, and # and o« are the thermal conductivity and thermal
diffusivity, respectively. Similar definitions are applied to 7,(x.H) and g,(x ., for the
liquid region. The thermal diffusivities o, and e, are equal to k&/p.c, and k,/0,c,,
respectively, where , msd o are density and specific heat, respectively. The initial,
boundary and freezing (moving) interface conditions are given as

Q,=0and 2,=0, at t=0 where  Q,=9,(H+2,() (3a)
T(x ,0)= T;= consl. for x €Q,(0) in case of solidification (3b-1)
or for x €Q,(0) in case of melting (3b-2)
®,0=TAx .0 for x ery(d (309
alx,.d=ag(x,D for x eIR(d) (3d)
T(x .0=Ta for x eI’ (9 e)
X ‘;:“ — & a‘;: =plV, forx el () in case of solidification (3f-1)
or k, 337’;: - k,—%% =pLV, for x el (§ in case of melting (3£-2)

where the subscript I indicates the solid-liquid interface, 7, is a prescribed transient
temperature distribution on the part I, of the whole boundary I, (=TIy+Ip+ ) and g, is
the prescribed heat flux being resulted from convective and/or radiative heat transfer on the
remaining part I'p of I',, L is the latent heat of fusion, n is the outward normal direction
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and Vv, is the normal outward velocity at a point x on the moving (freezing) boundary
defined as  v,=25(0 ., @

where x (D=x(Hi+y(Hi+z(Hk is location history of a point on the moving boundary
Ir(p defined in terms of unit vectors (i, j, k) along the global Cartesian axes, and #», is
the unit normal vector on the moving boundary I'{$ at a point x erl($), pointing outwards
from the solid region.

IIL Dual Reciprocity Boundary Element Formulation
For the dual reciprocity boundary element method(DRBEM) solutions for the temperature
fields in the solid and liquid phase regions, Eqs.(1) and (2) can be written in the generalized

form as  viT,(x ,:)=—al:[ T x .0 —%:g,(x D), x €9, p=s£ 5)

where the dot stands for the time derivative, and the subscript » represents the subscripts s
and ¢ which are used to indicate the solid and liquid phases, respectively. Hereafter, the
subscript » is omitted for simplicity.

Applying the usual boundary element technique, based on the use of the fundamental
solution and reciprocity principle (Green's theorem) to Eq.(5), the following integral equation
can be deduced.

CiTit [ Ta'ar- [orar = [A(r-2 9100 ©)
where 7° and ¢° are the fundamental solutions of Poisson equation, representing the field
generated by a concentrated unit source acting at a point 7.

The key idea of DRBEM is to take the remaining domain integral term to the boundary
with the use of the reciprocity principle once again for removing the need for complicated
domain discretization. To accomplish this purpose, first, the source-like term of Eq.(5) is
approximated by utilizing the method of a separation of variables as

Lir-29="8 50080 ¥
where g(pH are a set of initially unknown functions of time, f(x) arc known function of
geometry, and ¥ and L are the numbers of boundary and internal nodes, respectively.

And then, the approximating functions f( x) and the particular solutions 7} is linked
through the relation, vZ 7=/, ®)

Substituting Eqs.(7) and (8) into Eq.(6), and applying integration by parts two times to the
domain integral term of Eq.(6) gives

CTit [&'Tdr- [, Tadl = 338 (C:Ts+ [ o' Tyar= [, TG aD) ©
where g, is defined as g;=37;/an, and 7 is the unit outward normal to I,.

Assuming that the whole boundary of any domain of interest is divided into N elements,
Eq.(9) can be written in a discretized form, with summations over the boundary elements
replacing the integrals. Thereafter the use of a collocation technique leads to the resultant
equation in a matrix form as

HT-Gg= (HT-Go)8 10)
where H and G respectively are matrices of their elements H, and G, with C; being
incorporated to the principal diagonal of H. The clements H;, and G, are defined as
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Ha= Ha+ Cda, Ha= hu-p+hhk, Ga= La-n+&i an
where §; is the Kronecker delta and

M= [ $0'dl, K= [ 90'dl, b= [ QTN A= [ £T0, Ky = Ky &= & (1)

, and where the first and second indices of dual subscripts indicate the specified position of
the point where the evaluation is performed and the boundary element over which the contour
integration is carried out, respectively, and the superscripts 1 and 2 respectively are used to
identify the linear interpolation functions ¢, and ¢, with which the 7° and ¢ functions are
weighted in the integral terms. The matrices T, q, T, and g of Eq.(10) correspond to
vectors Ty, qi. Ty and g, , respectively, and the vector g is defined as

B=LFi(t-29 (13)
where F~! is the inverse matrix of F which consists of a vector f; containing the values
of the function f; at the (~+1) DRBEM collocation points, and 77 and g are the time
derivative of the matrix 7 and the heat source term matrix, respectively.
Substituting Eq.(13) into Eq.(12), the foliowing expression is obtained

CT+ HT= Ga+ CS 14)
where

c=-LcH? -l =

=— a( HT- Go F , §=

alh

£ 15)

IV. Numerical Implementation
Linear approximation in time
For simplicity, a two-level time integration scheme is employed in this study[19]. To do
this, a linear approximation for the variation of 7 and ¢ within each time step is adopted,
in the form

T=(-¢DT + T (16)
a=(1-£)a" +£4"™"" an
=4 (1" -1 a8)

where ¢, and £, are parameters, taking the values between 0 and 1, which position the
values of 7 and ¢ , respectively, between time level m and m+1, and Af denotes a
specified time step.
Substituting Eqs.(16)-(18) into Eq.(14) gives as
(R ctet) 7' -g, Ga™ <[ L c-(-tDH] T +(1-¢ Ga™+ Cs (19)

where the right - hand side of Eq.(19) is known at time (m+1) a¢, because it involves
values which have been specified as’ initial conditions and known functions or calculated at
the previous time ma¢.

As shown above, the major advantages of the DRBEM formulation with respect to other
techniques for addressing the Stefan problem come from the facts that meshing is needed
only on the boundaries of the solution domain, the problem can be solved for the heat fluxes
directly as in the use of usual boundary element method and the DRBEM formulation does
not involve any domain integral term.
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Moving boundary meotion
The normal direction of the node : can be defined by a length weighted average normal
vector »; at the node ; as

ni-1 L1+ né,;
L+ ¢; (20)

where, the lengths ¢, , and ¢, and the unit normals »;,_, and »; are for two contiguous
boundary eclements j-1 and j of the node ;. Thus, the unit normal vector n,;, of Eq.(4),
along which the normal velocity Vv, at the node ; is assigned, can be computed by
dividing the vector a; given by Eq.(20), by its own magnitude as follows:

”;
Pt
i

Now, the new positions of the nodes on the moving boundary can be computed by using
the following equation[18]:

= x/! +(ViegFate) - my; (22)

where x;” and x ;7' are the position vectors (containing the cartesian coordinates) of the

node ; on the moving boundary at a specified time ¢ and its previous time ¢,

respectively, the time step a¢. is equal to ¢e—¢r.;, and VT }F indicates the averaged

normal velocity V, of the node ; during the time step at¢s.

@n

Iteration algorithm
The numerical solution of the nonlinear problem considered here can be obtained by

applying an iterative algorithm for addressing the nonlinearity of the problem, originated from

the unknown trajectory of the moving interfacial boundary. A general solution algorithm

which can be applied for solving one or two-dimensional problems is summarized as

(1) Divide the fixed (outer) boundary of the domain initially occupied either with a liquid or
a solid at a uniform temperature into N, linear elements.

(2) Assume the initial predicted average velocities of the moving boundary nodes Vs, at the
beginning of the first time step A¢,.

(3) Calculate the location of the solid-liquid interfacial( moving ) boundary based on the
assumed values of V5%,

(4) Divide the moving boundary into N, linear elements.

(5) Define interior nodes necessary for obtaining accurate solution both in the solid and liquid
phase regions, of which the numbers are L, and L,, respectively.

(6) With the known average (predicted) velocity V5%, determine the predicted geometry at
the end of the time step, then calculate all matrices in Eq.(19) and solve for either T
or g on the fixed and moving boundaries, and finally, compute the new values of V&
by using Egs.(3f) and (4), where v®* is the calculated moving boundary velocity at the
end of the actual time step after a new iteration.

(7) Determine the corrected average velocity V2%* from previous time (-_, and curmrent time

tras  VE=L(Vei+ VED
where V,_, is the moving boundary velocity at the end of the previous time step and
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Vox is the corrected average velocity of the moving boundary at time step &t
(8) Check comvergence : If Ver = V| V:'I';""Vr I > Em
(where |- | denotes a vector norm and &, is a prespecified maximum acceptable
emor), set Var=Vys and continue the operations iteratively from step (6) until the
relative error becomes less than or equal to e,,,.
(9) If convergence is achieved, update geometry, temperatures and fluxes, and continue to the
next time step with Vig,=V;,
where Vi is the moving boundary velocity at the end of the actual time step.
(10) Before updating of geometry and continuation to the next time step, it is necessary to
check if the positions of the moving boundary nodes at time ¢, obtained at the end of
a successful iteration, could result in numerical instabilities due to the formation of a
kink in the boundary or a distorted mesh causing the occurrence of tangling, or nodes
coming very close to each other at the next time step Ate,., from ¢ to fg,,. When
this is the case, remeshing has to be performed at the time ¢r, by node removal or
node rearrangement as mentioned previously.

V. Numerical Example
To illustrate the validity of the DRBEM technique, presented in this paper, for solving the
Stefan problems, some numerical tests have been performed. For this purpose, one example of
which the solutions obtained by other methods are available in the literatures[15, 20-22] have
been considered in this study. In order to facilitate the comparisons of the present solutions
with available data, the following dimensionless parameters have been used :

~ ~ _ Qg ~ ~ Ce o X Sy _ ad
at"l a,= . C:_'l Cy Ce ’ R y R [3 )
_ T- T. C:( Tu_ To)
6= To=T, St= L

where R , St and ¢, are a chamacteristic length, the Stefan number and the specific heat
of the solid phase, respectively. The values of ¢, = 1.0 and £, = 1.0 are used for solving
Eq.(19) in the present test.

The example is that of a square 2x2 which is initially filled with liquid at the melting
temperature (4,=0) and is suddenly subject to a constant surface temperature below the
melting point. It is assumed that the liquid has no heat generation for simplicity. As
mentioned previously, the major advantage of using the DRBEM for addressing the Stefan
problem comes from the facts that meshing is needed only on the boundaries of the solution
domain and the problem can be solved for the heat fluxes directly. In this calculations, 32
linear boundary elements for the fixed outer boundary were used and a time step of =0.025
was adopted. For the specified maximum relative error of 10'3, the number of iterations, with
which convergence was achieved, was 21 in the first starting time step calculation while in
all the succeeding time step calculations it varied between a minimum of 4 and a maximum
of 19. The remeshing by node removal is adopted to avoid potential numerical instabilities
which may be caused by the moving interfacial boundary nodes coming too close.

The DRBEM results are compared on Fig2 with the BEM-convolution type integral
solution of Zabaras and Mukherjee[15], and in Fig.2 with the implicit finite difference
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solution of Rao and Sastri{20] and the pioneering work of Lazaridis[21], and also with the
semi-analytical solution of Rathjen and Jiji[22). As is seen from the figures, the present
DRBEM solutions compare very well with those by other methods.

VL Conclusions

The DRBEM technique presented in this study, as compared to other numerical methods,
has been shown to be very effective and simple to use not only since it has no serious time
step limitations and permits the use of relatively coarse and irregular mesh as in the usual
BEM formulation for the same problem, but the DRBEM formulation has no integral terms
such that the need for evaluating such convolution type integrals as being imvolved in the
usual BEM formulation is removed. The present iterative solution algorithm yielded desirable
results such that only a few number of iterations leads to comvergence for the specified
relative error of 107 in all the cases tested here. It is seen from the calculation results of the
tests investigated in this study that the DRBEM solutions are in good agreement with the
existing analytical or numerical solutions.

It is emphasized that the DRBEM solutions of nonlincar transient heat transfer problems
involving heat generation within the solution domain, which have been formulated in this
study, can be as well computed with little difficulty by following the similar numerical
implementation procedure. Consequently, the method presented is considered to be very
promising for a variety of nonlinear transient heat transfer problems involving phase change.
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