• Title/Summary/Keyword: Boundary Integral Method

Search Result 389, Processing Time 0.027 seconds

Sensitivity Analysis of Linear Elastic Problem due to Variations of the Traction Boundary Conditions (하중경계조건의 변화에 대한 선형탄성문제의 민감도 해석)

  • 이태원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1852-1860
    • /
    • 1991
  • A shape design sensitivity of the elastic deformation due to a change of traction boundary condition is presented. The solution of governing equations for a linear elasticity problem is obtained by finite element method and the traction boundary is defined by design variables. The performance functional to be considered involves both the domain and boundary integral. Variations of geometry can be defined as design velocity. Using material derivative concept and adjoint equations, the design sensitivity is derived by Lagrange multiplier method. For a given geometry of a structure, the change of traction boundary is described by the tangential component of the design velocity only. The final result for the shape design sensitivity is formulated as the boundary integral form, the integrand is defined by tangential component of design velocity and first order derivatives of parameters. Numerical implementation of design sensitivity is discussed and is compared with the difference of the actual values.

Shape Design Sensitivity Analysis of Axisymmetric Thermal Conducting Solids Using Boundary Integral Equations (경계적분방정식을 이용한 축대칭 열전도 고체의 형상설계민감도 해석)

  • 이부윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.141-152
    • /
    • 1993
  • A generalized method is presented for shape design sensitivity analysis of axisymmetric thermal conducting solids. The shape sensitivity formula of a general performance functional arising in shape optimal design problem is derived using the material derivative concept and the adjoint variable method. The method for deriving the formula is based on standard axisymmetric boundary integral equation formulation. It is then applied to obtain the sensitivity formulas for temperature and heat flux constraints imposed over a small segment of the boundary. To show the accuracy of the sensitivity analysis, numerical implementations are done for three examples. Sensitivities calculated by the presented method are compared with analytic sensitivities for two examples with analytic solutions, and compared with sensitivies by finite difference for a cooling fin example.

Analysis of Three Dimensional Crack Growth by Using the Symmetric Galerkin Boundary Element Method

  • Kim, Tae-Soon;Park, Jai-Hak
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 2003
  • In order to analyze general three dimensional cracks in an infinite body, the symmetric Galerkin boundary element method formulated by Li and Mear is used. A crack is modelled as distribution of displacement discontinuities, and the governing equation is formulated as singularity-reduced integral equations. With the proposed method several example problems for three dimensional cracks in an infinite solid, as well as their growth under fatigue, are solved and the accuracy and efficiency of the method are demonstrated.

Vertical Structure of the Coastal Atmospheric Boundary Layer Based on Terra/MODIS Data (Terra/MODIS 자료를 이용한 연안 대기경계층의 연직구조)

  • Kim, Dong Su;Kwon, Byung Hyuk
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.281-289
    • /
    • 2007
  • Micrometeorlogical and upper air observation have been conducted in order to determine the atmospheric boundary layer depth based on data from satellite and automatic weather systems. Terra/MODIS temperature profiles and sensible heat fluxes from the gradient method were used to estimate the mixed layer height over a coastal region. Results of the integral model were in good agreement with the mixed layer height observed using GPS radiosonde at Wolsung ($35.72^{\circ}N$, $129.48^{\circ}E$). Since the variation of the mixed layer height depends on the surface sensible heat flux, the integral model estimated properly the mixed layer height in the daytime. The buoyant heat flux, which is more important than the sensible heat flux in the coastal region, must be taken into consideration to improve the integral model. The vertical structure of atmospheric boundary layer can be analyzed only with the routine data and the satellite data.

Calculation of Stress Intensity Factors for a Thick Pipe Using Weight Function Method (가중함수법을 이용한 두꺼운 배관의 응력강도계수 계산)

  • Lee, Hyeong-Yeon;Lee, Jae-Han;Yoo, Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.7
    • /
    • pp.2167-2173
    • /
    • 1996
  • An approximate weight function technique using the indirect boundary integral equation has been presented for the analysis of stress intensity foactors(SIFs) of a thick pipe. One-term boundary integral was introduced to represent the crack surface displacement field for the displacement based weight function technique. An explicit closed-form SIF solution applicable to symmetric cracked pipes without any modification of the solution including both circumferential and radial cracks has been derived. The necessary information in the analysis is two or three reference SIFs. In most cases the SIF solution were in good agreement with those available in the literature.

Development of the direct boundary element method for thin bodies with general boundary conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.701-708
    • /
    • 1997
  • A direct boundary element method(DBEM) is developed for thin bodies whose surfaces are rigid or compliant. Th eHelmholtz integral equation and its normal derivative integral equation are adopted simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discontinuous across the thin body. In this approach, only the neural surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absorbing material.

  • PDF

Rotation-Free Plate Element Based on the Natural Element Method (자연요소법에 기초한 회전자유도가 없는 평판요소)

  • Cho, Jin-Rae;Choi, Joo-Hyoung;Lee, Hong-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.513-518
    • /
    • 2007
  • A polygon-wise constant curvature natural element approximation is presented in this paper for the numerical implementation of the abstract Kirchhoff plate model. The strict continuity requirement in the displacement field is relaxed by converting the area integral of the curvatures into the boundary integral along the Voronoi boundary. Curvatures and bending moments are assumed to be constant within each Voronoi polygon, and the Voronoi-polygon-wise constant curvatures are derived in a selective manner for the sake of the imposition of essential boundary conditions. The numerical results illustrating the proposed method are also given.

  • PDF

Bending analysis of functionally graded plates with arbitrary shapes and boundary conditions

  • Panyatong, Monchai;Chinnaboon, Boonme;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.627-641
    • /
    • 2019
  • The paper focuses on bending analysis of the functionally graded (FG) plates with arbitrary shapes and boundary conditions. The material property of FG plates is modelled by using the power law distribution. Based on the first order shear deformation plate theory (FSDT), the governing equations as well as boundary conditions are formulated and obtained by using the principle of virtual work. The coupled Boundary Element-Radial Basis Function (BE-RBF) method is established to solve the complex FG plates. The proposed methodology is developed by applying the concept of the analog equation method (AEM). According to the AEM, the original governing differential equations are replaced by three Poisson equations with fictitious sources under the same boundary conditions. Then, the fictitious sources are established by the application of a technique based on the boundary element method and approximated by using the radial basis functions. The solution of the actual problem is attained from the known integral representations of the potential problem. Therefore, the kernels of the boundary integral equations are conveniently evaluated and readily determined, so that the complex FG plates can be easily computed. The reliability of the proposed method is evaluated by comparing the present results with those from analytical solutions. The effects of the power index, the length to thickness ratio and the modulus ratio on the bending responses are investigated. Finally, many interesting features and results obtained from the analysis of the FG plates with arbitrary shapes and boundary conditions are demonstrated.

Virtual boundary element-equivalent collocation method for the plane magnetoelectroelastic solids

  • Yao, Wei-An;Li, Xiao-Chuan;Yu, Gui-Rong
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.1-16
    • /
    • 2006
  • This paper presents a virtual boundary element-equivalent collocation method (VBEM) for the plane magnetoelectroelastic solids, which is based on the fundamental solutions of the plane magnetoelectroelastic solids and the basic idea of the virtual boundary element method for elasticity. Besides all the advantages of the conventional boundary element method (BEM) over domain discretization methods, this method avoids the computation of singular integral on the boundary by introducing the virtual boundary. In the end, several numerical examples are performed to demonstrate the performance of this method, and the results show that they agree well with the exact solutions. So the method is one of the efficient numerical methods used to analyze megnatoelectroelastic solids.

A Boundary Integral Method for Elastic Shallow Shell (쉘 구조물의 경계적분법)

  • Kim Jin Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.7 no.3 s.18
    • /
    • pp.157-164
    • /
    • 2004
  • This is a boundary integral formulation for elastic shallow shell structures subjected to both membrane and bending loads. Fundamental solutions for shell actions are determined from the plate solutions and, finally the corresponding kernel functions for shell BIEs can be constructed. It is illustrated by solving an example of uniform load of spherical cap.