Acknowledgement
Supported by : Thailand Research Fund (TRF), King Mongkut's University of Technology Thonburi (KMUTT)
References
- Abad, F. and Rouzegar, J. (2017), "An exact spectral element method for free vibration analysis of FG plate integrated with piezoelectric layers", Compos. Struct., 180, 696-708. https://doi.org/10.1016/j.compstruct.2017.08.030.
- Aghazadeh, R., Dag, S. and Cigeroglu, E. (2018), "Modelling of graded rectangular micro-plates with variable length scale parameters", Struct. Eng. Mech., 65(5), 573-585. https://doi.org/10.12989/sem.2018.65.5.573.
- Alshorbagy, A.E., Alieldin, S.S., Shaat, M. and Mahmoud, F.F. (2013), "Finite element analysis of the deformation of functionally graded plates under thermomechanical loads", Math. Probl. Eng., 2013. http://dx.doi.org/10.1155/2013/569781.
- Amir, S., Ghannadpour, M., and Kiani, P. (2018), "Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening", Struct. Eng. Mech., 66(5), 557-568. https://doi.org/10.12989/sem.2018.66.5.557.
- Ardestani, M.M., Soltani, B. and Shams, Sh. (2014), "Analysis of functionally graded stiffened plates based on FSDT utilizing reproducing kernel particle method", Compos. Struct., 112, 231-240. https://doi.org/10.1016/j.compstruct.2014.01.032.
- Babouskos, N.G. and Katsikadelis, J.T. (2015), "Optimum design of thin plates via frequency optimization using BEM", Arch. Appl. Mech., 85(9-10), 1175-1190. https://doi.org/10.1007/s00419-014-0962-7.
- Bouhadra A., Tounsi, A., Bousahla, A., Benyoucef, S. and Mahmoud, S.R. (2018), "Improved HSDT accounting for effect of thickness stretching in advanced composite plates", Struct. Eng. Mech., 66(1), 61-73. https://doi.org/10.12989/SEM.2018.66.1.061
- Chinnaboon, B., Chucheepsakul, S. and Katsikadelis, J.T. (2007a), "A BEM-based meshless method for elastic buckling analysis of plates", Int. J Struct. Stabil. Dynam., 7(1), 81-99. https://doi.org/10.1142/S0219455407002162.
- Chinnaboon, B., Chucheepsakul, S. and Katsikadelis, J.T. (2011), "A BEM-based domain meshless method for the analysis of Mindlin plates with general boundary conditions", Comput. Meth. Appl. Mech. Eng., 200(13-16), 1379-1388. https://doi.org/10.1016/j.cma.2010.12.014.
- Chinnaboon, B., Katsikadelis, J.T. and Chucheepsakul, S. (2007b), "A BEM-based meshless method for plates on biparametric elastic foundation with internal supports", Comput. Meth. Appl. Mech. Eng., 197(33-34), 3165-3177. https://doi.org/10.1016/j.cma.2007.02.012.
- Daouadji, T.H. and Adim, B. (2017), "Mechanical behavior of FGM sandwich plates using a quasi-3D higher order shear and normal deformation theory", Struct. Eng. Mech., 61(1), 49-63. https://doi.org/10.12989/sem.2017.61.1.049.
- Efraim, E. and Eisenberger, M. (2007), "Exact vibration analysis of variable thickness thick annular isotropic and FGM plates", J. Sound Vib., 299(4-5), 720-738. https://doi.org/10.1016/j.jsv.2006.06.068.
- Fam, G.S.A., Rashed, Y.F. and Katsikadelis, J.T. (2015), "The analog equation integral formulation for plane piezoelectric media", Eng. Anal. Bound. Elem., 51, 199-212. https://doi.org/10.1016/j.enganabound.2014.10.013.
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1-4), 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018.
- Hashemi, S.H., Taher, H.R.D., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory", Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
- Katsikadelis, J.T. (2002), "The analog boundary integral equation method for nonlinear static and dynamic problem in continuum mechanics", Int. J Theor. Appl. Mech., 40(4), 961-984.
- Katsikadelis, J.T. and Babouskos, N.G. (2010), "Post-buckling analysis of viscoelastic plates with fractional derivative models", Eng. Anal. Bound. Elem., 34(12), 1038-1048. https://doi.org/10.1016/j.enganabound.2010.07.003.
- Katsikadelis, J.T. and Babouskos, N.G. (2012), "Stiffness and buckling optimization of thin plates with BEM", Arch. Appl. Mech., 82(10-11), 1403-1422. https://doi.org/10.1007/s00419-012-0668-7.
- Kitipornchai, S., Yang, J. and Liew, K.M. (2006), "Random vibration of the functionally graded laminates in thermal environments", Comp. Meth. Appl. Mech. Eng., 195(9-12), 1075-1095. https://doi.org/10.1016/j.cma.2005.01.016.
- Najafizadeh, M.M. and Heydari H.R. (2004), "Thermal buckling of functionally graded circular plates based on higher order shear deformation plate theory", Eur. J Mech. Solid., 23(6), 1085-1100. https://doi.org/10.1016/j.euromechsol.2004.08.004.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Struct., 94(5), 1814-1825. https://doi.org/10.1016/j.compstruct.2011.12.005.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2008), "First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83, 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.
- Panyatong, M., Chinnaboon, B. and Chucheepsakul, S. (2018), "Nonlinear bending analysis of nonlocal nanoplates with general shapes and boundary conditions by the boundary-only method", Eng. Anal. Bound. Elem., 87, 90-110. https://doi.org/10.1016/j.enganabound.2017.12.003.
- Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. B Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3%3C663::AID-NME787%3E3.0.CO;2-8
- Reddy, J.N. and Kim, J. (2012), "A nonlinear modified couple stress-based third-order theory of functionally graded plates", Compos. Struct., 94(3), 1128-1143. https://doi.org/10.1016/j.compstruct.2011.10.006.
- Roque, C.M.C., Ferreira, A.J.M. and Jorge, R.M.N. (2007), "A radial basis function approach for the free vibration analysis of functionally graded plates using a refined theory", J. Sound Vib., 300(3-5), 1048-1070. https://doi.org/10.1016/j.jsv.2006.08.037.
- Shaat, M., Mahmoud, F.F., Alshorbagy, A.E. and Alieldin, S.S. (2013), "Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects", Int. J Mech. Sci., 75, 223-232. https://doi.org/10.1016/j.ijmecsci.2013.07.001.
- Shen, H.S. (2007), "Thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties", Int. J Mech. Sci., 49(4), 466-478. https://doi.org/10.1016/j.ijmecsci.2006.09.011.
- Talha, M. and Singh, B.N. (2010), "Static response and free vibration analysis of FGM plates using higher order shear deformation theory", Appl. Math. Model., 34(12), 3991-4011. https://doi.org/10.1016/j.apm.2010.03.034.
- Wu, C.P. and Li, H.Y. (2010), "An RMVT-based third-order shear deformation theory of multilayered functionally graded material plates", Compos. Struct., 92(10), 2591-2605. https://doi.org/10.1016/j.compstruct.2010.01.022.
- Yang, J., Liew, K.M. and Kitipornchai, S. (2005), "Stochastic analysis of compositionally graded plates with system randomness under static loading", Int J Mech. Sci., 47(10), 1519-1541. https://doi.org/10.1016/j.ijmecsci.2005.06.006.
- Yiotis, A.J. and Katsikadelis, J.T. (2013), "Analysis of cylindrical shell panels. A meshless solution", Eng. Anal. Bound. Elem., 37(6), 928-935. https://doi.org/10.1016/j.enganabound.2013.03.005.
- Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44, 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016.
- Zhang, L.W. and Liew, K.M. (2016), "Element-free geometrically nonlinear analysis of quadrilateral functionally graded material plates with internal column supports", Compos. Struct., 147, 99-110. https://doi.org/10.1016/j.compstruct.2016.03.034.