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noded boundary elements. Quarter-points singular ele-
ments are placed near the crack front. With the use of
the proposed procedure the stress intensity factors for
some of three dimensional cracks in infinite media are
calculated. A comparison of results with the published
solutions shows that the SGBEM is very efficient and
highly accurate for analysis of three dimensional cracks
in infinite bodies.

2. Symmetric Galerkin boundary element method

2.1 Governing equation

Consider an infinite three-dimensional body contain-
ing arbitrarily three dimensional cracks of arbitrary
geometry. A distributed load is applied at the crack sur-
face. The crack can be described by a distribution of
displacement discontinuity with components [5-8].
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Here § = S, is one of crack surfaces; u; are dis-
placement discontinuities for the crack surface; u: are
the components of a continuous test function; and ¢,
are crack face tractions.

The two-point weakly singular kernel is given by the
following expression:
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where v is Poisson’s ratio and [ is the shear modulus.
A tangential operator D, is defined as follows:
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where, TM;, M, are the surface coordinates on the

crack surface, J = |sx 1, and s, ¢ are vectors in the
plane that is tangent to the crack surface.
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2.2 Discretization of the integral equation

Assume the crack that is partitioned into boundary
elements. Displacement discontinuities and tractions are
defined at element nodes, and are interpolated inside the
elements with the use of shape functions N,:

ui = Na(n hﬂz)!»lm

ti = Na(nlan2)tia (4)

where i = 1,2,3 is the global coordinate subscript;
a is the node number; mn,, M, are element local coor-
dinates. With the use of a parametric representation of
displacement discontinuities and tractions, we can
rewrite the integral equation (1) in the following dis-
cretized form:
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Using the integral equation (5), displacement disconti-
nuities at element nodes of the crack are defined, and
then the stress intensity factors can be calculated from
their values.

2.3 Modeling of fatigue crack growth.

The fatigue crack growth models of materials(such as
Paris, Forman or NASGRO models) express the func-
tional relationship for crack growth rate through the
range of the effective stress intensity factor K,;:

C%'C\l] = f(AK.y) (6)

where da/dN is the crack growth per cycle and
AK = Koy — Kiin -

Modeling of fatigue crack growth is performed by
finite increments. At each increment, the maximum crack
advance is specified as Aa,,,. The crack advance for a
particular point at the crack front is calculated as fol-
lows:

(da/dN)
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We use the following procedure for the advancement
of the front of the crack:

1) Using SGBEM, solve the problem for the current
crack configuration and determine ranges for the stress
intensity factors at the crack front.

2) Determine the crack front coordinate system for
each corner node at the corner point of two neighboring
boundary elements.

3) Calculate the crack advance Aa and the angle,
move each corner node in the local coordinate system,
and then transform the movement to the global coordi-
nate system.

4) Find the locations of crack front midside nodes,
using cubic spline interpolations for corner nodes from
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several neighboring elements.

5) Shift the quarter-point nodes on element sides nor-
mal to the crack front.

After terminating the crack growth procedure, the
total number of cycles N is calculated as a sum AN, of
at crack growth increments.

3. Alternating method

In fracture mechanics problems, Combining the sym-
metric Galerkin boundary element method for modeling
an arbitrary non-planar crack in an infinite body, and
the finite element method for an uncracked finite body,
allows us to employ advantages of both methods. The
finite element method is a robust method for elastic and
elastic-plastic problems. It can easily incorporate various
types of boundary conditions. The finite element
method is widely used in industry. There are commer-
cial preprocessor programs, which are capable of trans-
forming any CAD model into a finite element model.

The BEM is most suitable for modeling cracks in
infinite bodies. The displacement discontinuity approach
provides for a simple modeling of the crack. Only one
surface of the crack should be discretized. The indepen-
dence of the crack model and the finite element model
of the body allows to easily change the crack model in
order to simulate crack growth under monotonic or
cyclic loading. The solution for a finite body with a
crack is obtained as a superposition of two models:

1) finite element model for a finite body under exter-
nal loading, without a crack;

2) an infinite body with a crack modeled by the sym-
metric Galerkin boundary element method.

Illustration of the superposition principle is presented
in Fig. 1. For a correct superposition corresponding to
the solution for a finite body with a crack, fictitious
forces on the boundary of the finite element model
should be found in order to compensate for the stresses
caused by the presence of a crack in an infinite body.
While this can be done with a direct procedure, the
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Fig. 1 Superposition principle [10]

alternating method provides for a more efficient solu-
tion, without assembling the joint SGBEM-FEM miatrix [1].

The SGBEM-FEM alternating method alternates between
the finite element solution for an uncracked body and
the displacement discontinuity method solution for a
crack in an infinite body. Using an iteration procedure,
artificial tractions at the boundary of the finite element-
modeled body and at the crack surface, are found.

The steps of the SGBEM-FEM alternating iteration
procedure are as follows [9]:

1) Using FEM, obtain the stresses at the location of
the crack in a finite uncracked body subjected to given
boundary conditions.

2) Using SGBEM, solve the problem of a crack, the
faces of which subjected to tractions, as found from
FEM analysis of the uncracked body.

3) Determine the residual forces at the outer bound-
aries of the finite body, from displacement discontinui-
ties at the crack surface.

4) Using FEM, solve a problem for a finiteuncracked
body under residual forces from SGBEM analysis.

5) Obtain the stresses at the location of the crack cor-
responding to FEM solution.

6) Repeat (2)-(5) steps until the residual load is small
enough.

7) Compute the solution for a finite body by sum-
ming alll the appropriate contributions,

4. Numerical results

In order to demonstrate the accuracy of the SGBEM
procedure, the solutions for three dimensional cracks in
infinite bodies are presented. And as an example prob-
lem of the fatigue crack growth, a rectangular precrack
is given. In all examples, 8-noded quadrilateral boundary
elements are used for crack surface discretization. Gaus-
sian integration rule, with three points in each of the four
directions is employed for computing boundary element
matrices for regular and singular cases. Quarter-point sin-
gular elements are places at the crack front [10].

4.1 Penny-shaped crack under tension.

The mesh for a penny-shaped circular crack under
tensile loading along is shown in Fig. 2. Exact solution
for the problem is given by Sneddon [11] and Kassir
and Sih [12]:

K, = %cm ®)

where a is the crack radius (length), ¢ is the applied
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remote stress. Three meshes consisting of 12, 20 and 40
quadratic elements are used. Results for the stress inten-
sity factors normalized K,/[(2/ n)GJn_a] as are pre-
‘sented in Fig. 3. Three kinds of meshes all provide
accurate results. Especially, the meshes of 40 elements
gives values of the stress intensity factors with an error
about 0.2%.

4.2 Elliptical crack in an infinite solid under tension.
The mesh of an elliptical crack under tension in an
infinite body is shown in Fig. 4, and it is composed of
72 boundary elements and 205 nodes in such a way that
it is produced by scaling the circular mesh in one direc-
tion. After scaling, the element edges are not normal to
the crack front line. The crack is mainly characterized
by axis-ratio that varies from 0.5 to 2.0 in 3 steps.
Results for the elliptical crack are given in Fig. 5.
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Fig. 2 Meshes for a penny-shaped crack.
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Fig. 3 Stress intensity factors for a penny-shaped crack.

Fig. 4 Mesh for an elliptical crack.

The stress intensity factor values are normalized as
K,/(oJma). As shown in Fig. 5, a satisfactory agree-
ment of our results with theoretical solution [13] is
observed except points that their singular nodes are not
normal to the crack front line.

4.3 Rectangular crack in an infinite solid under ten-
sion.

The crack bounded by a rectangular front in an infi-
nite body is shown in Fig. 6. The crack boundary ele-
ment meshes consisting of 40, 56, 72 and 96 elements.
The crack is mainly characterized by axis-ratio a/b that
varies from 0.25 to 1.0 in 4 steps.

Results for the elliptical crack are also given in Fig.
6. The stress intensity factor values obtained at point A
are normalized as K,/ (GJn—a). As shown in Fig. 6, a
good agreement of our results with those of Murakami
and Nemat-Nasser [14] is observed.

4.4 Fatigue crack growth
In order to analyze the fatigue growth of three dimen-
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Fig. 5 Stress intensity factors for an elliptical crack.
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Fig. 6 Stress intensity factors for a rectangular crack.
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Fig. 7 Growth of a rectangular crack.

sional crack under a uniform tensile loading conditions,
a rectangular crack in an infinite body is considered as
a precrack. The axis ratio() of a rectangle is 2.0 and is
discretized by 56 quadratic boundary elements. The
Paris material fatigue model was chosen to simulate
fatigue crack growth:

da m

pivi C(AK) 9

where da/dN is the crack growth rate with respect to
the loading cycles, C = 3.0x10™ and m = 3.0 are
material parameters as recommended by Maddox [15]
for a wide range of structural steels. Units of da/dN and
AK are m/cycle and MPa./m respectively.

To analyze the rectangular precrack, the first thing
to be done is to calculate the stress intensity factors K;
for the crack front nodes. According to the stress inten-
sity factors, points at the crack front are advanced to
new positions with scaling to the specified maximum
crack advance dan,. A new layer of elements is newly
defined by the relationship of old and new crack front
lines. Then the new crack model is analyzed and
etc. Five crack advancements were performed and the
view of cracks after crack increments are given in
Fig. 7.

5. Conclusion

The symmetric Galerkin boundary element method
has been used for the analysis of three dimensional
cracks in infinite bodies. Especially, since the finite ele-
ment mesh for the uncracked body and the boundary
mesh for the crack are completely independent, the
SGBEM is particularly efficient for modeling of fatigue
crack growth.

By using the method, some of problems for the three
dimensional cracks, such as penny-shaped, elliptical and
rectangular cracks, under tensile loading conditions, is
analyzed including an example of fatigue crack growth.
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