• 제목/요약/키워드: Bloch functions

검색결과 35건 처리시간 0.022초

LIPSCHITZ TYPE INEQUALITY IN WEIGHTED BLOCH SPACE Bq

  • Park, Ki-Seong
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.277-287
    • /
    • 2002
  • Let B be the open unit ball with center 0 in the complex space $C^n$. For each q>0, B$_{q}$ consists of holomorphic functions f : B longrightarrow C which satisfy sup z $\in$ B $(1-\parallel z \parallel^2)^q\parallel\nabla f(z)\parallel < \infty$ In this paper, we will show that functions in weighted Bloch spaces $B_{q}$ (0 < q < 1) satifies the following Lipschitz type result for Bergman metric $\beta$: |f(z)-f($\omega$)|< $C\beta$(z, $\omega$) for some constant C.

Generalized Integration Operator between the Bloch-type Space and Weighted Dirichlet-type Spaces

  • Ardebili, Fariba Alighadr;Vaezi, Hamid;Hassanlou, Mostafa
    • Kyungpook Mathematical Journal
    • /
    • 제60권3호
    • /
    • pp.519-534
    • /
    • 2020
  • Let H(𝔻) be the space of all holomorphic functions on the open unit disc 𝔻 in the complex plane ℂ. In this paper, we investigate the boundedness and compactness of the generalized integration operator $$I^{(n)}_{g,{\varphi}}(f)(z)=\normalsize\displaystyle\smashmargin{2}{\int\nolimits_0}^z\;f^{(n)}({\varphi}({\xi}))g({\xi})\;d{\xi},\;z{\in}{\mathbb{D}},$$ between Bloch-type and weighted Dirichlet-type spaces, where 𝜑 is a holomorphic self-map of 𝔻, n ∈ ℕ and g ∈ H(𝔻).

ON DUALITY OF WEIGHTED BLOCH SPACES IN ℂn

  • Yang, Gye Tak;Choi, Ki Seong
    • 충청수학회지
    • /
    • 제23권3호
    • /
    • pp.523-534
    • /
    • 2010
  • In this paper, we consider the weighted Bloch spaces ${\mathcal{B}}_q$(q > 0) on the open unit ball in ${\mathbb{C}}^n$. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space ${\mathcal{B}}_q$ for q > 0. This means that for each q > 0, the Banach dual of $L_a^1$ is ${\mathcal{B}}_q$ and the Banach dual of ${\mathcal{B}}_{q,0}$ is $L_a^1$ for each $q{\geq}1$.

THE GROWTH OF BLOCH FUNCTIONS IN SOME SPACES

  • Wenwan Yang;Junming Zhugeliu
    • 대한수학회보
    • /
    • 제61권4호
    • /
    • pp.959-968
    • /
    • 2024
  • Suppose f belongs to the Bloch space with f(0) = 0. For 0 < r < 1 and 0 < p < ∞, we show that $$M_p(r,\,f)\,=\,({\frac{1}{2\pi}}{\int_{0}^{2\pi}}\,{\mid}f(re^{it}){\mid}^pdt)^{1/p}\,{\leq}\,({\frac{{\Gamma}(\frac{p}{2}+1)}{{\Gamma}(\frac{p}{2}+1-k)}})^{1/p}\,{\rho}{\mathcal{B}}(log\frac{1}{1-r^2})^{1/2},$$ where ρʙ(f) = supz∈ⅅ(1 - |z|2)|f'(z)| and k is the integer satisfying 0 < p - 2k ≤ 2. Moreover, we prove that for 0 < r < 1 and p > 1, $${\parallel}f_r{\parallel}_{B_q}\,{\leq}\,r\,{\rho}{\mathcal{B}}(f)(\frac{1}{(1-r^2)(q-1)})^{1/q},$$ where fr(z) = f(rz) and ||·||ʙq is the Besov seminorm given by ║f║ʙq = (∫𝔻 |f'(z)|q(1-|z|2)q-2dA(z)). These results improve previous results of Clunie and MacGregor.

LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN Cn

  • Choi, Ki-Seong
    • 대한수학회논문집
    • /
    • 제18권3호
    • /
    • pp.469-479
    • /
    • 2003
  • Let B be the open unit ball in $C^{n}$ and ${\mu}_{q}$(q > -1) the Lebesgue measure such that ${\mu}_{q}$(B) = 1. Let ${L_{a,q}}^2$ be the subspace of ${L^2(B,D{\mu}_q)$ consisting of analytic functions, and let $\overline{{L_{a,q}}^2}$ be the subspace of ${L^2(B,D{\mu}_q)$) consisting of conjugate analytic functions. Let $\bar{P}$ be the orthogonal projection from ${L^2(B,D{\mu}_q)$ into $\overline{{L_{a,q}}^2}$. The little Hankel operator ${h_{\varphi}}^{q}\;:\;{L_{a,q}}^2\;{\rightarrow}\;{\overline}{{L_{a,q}}^2}$ is defined by ${h_{\varphi}}^{q}(\cdot)\;=\;{\bar{P}}({\varphi}{\cdot})$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator ${h_{\varphi}}^{q}$ is bounded(or compact).

A SUBCLASS OF HARMONIC UNIVALENT MAPPINGS WITH A RESTRICTED ANALYTIC PART

  • Chinhara, Bikash Kumar;Gochhayat, Priyabrat;Maharana, Sudhananda
    • 대한수학회논문집
    • /
    • 제34권3호
    • /
    • pp.841-854
    • /
    • 2019
  • In this article, a subclass of univalent harmonic mapping is introduced by restricting its analytic part to lie in the class $S^{\delta}[{\alpha}]$, $0{\leq}{\alpha}<1$, $-{\infty}<{\delta}<{\infty}$ which has been introduced and studied by Kumar [17] (see also [20], [21], [22], [23]). Coefficient estimations, growth and distortion properties, area theorem and covering estimates of functions in the newly defined class have been established. Furthermore, we also found bound for the Bloch's constant for all functions in that family.

DIFFERENCES OF DIFFERENTIAL OPERATORS BETWEEN WEIGHTED-TYPE SPACES

  • Al Ghafri, Mohammed Said;Manhas, Jasbir Singh
    • 대한수학회논문집
    • /
    • 제36권3호
    • /
    • pp.465-483
    • /
    • 2021
  • Let 𝓗(𝔻) be the space of analytic functions on the unit disc 𝔻. Let 𝜓 = (𝜓j)nj=0 and 𝚽 = (𝚽j)nj=0 be such that 𝜓j, 𝚽j ∈ 𝓗(𝔻). The linear differential operator is defined by T𝜓(f) = ∑nj=0 𝜓jf(j), f ∈ 𝓗(𝔻). We characterize the boundedness and compactness of the difference operator (T𝜓 - T𝚽)(f) = ∑nj=0 (𝜓j - 𝚽j) f(j) between weighted-type spaces of analytic functions. As applications, we obtained boundedness and compactness of the difference of multiplication operators between weighted-type and Bloch-type spaces. Also, we give examples of unbounded (non compact) differential operators such that their difference is bounded (compact).

Lp-boundedness (1 ≤ p ≤ ∞) for Bergman Projection on a Class of Convex Domains of Infinite Type in ℂ2

  • Ly Kim Ha
    • Kyungpook Mathematical Journal
    • /
    • 제63권3호
    • /
    • pp.413-424
    • /
    • 2023
  • The main purpose of this paper is to show that over a large class of bounded domains Ω ⊂ ℂ2, for 1 < p < ∞, the Bergman projection 𝓟 is bounded from Lp(Ω, dV ) to the Bergman space Ap(Ω); from L(Ω) to the holomorphic Bloch space BlHol(Ω); and from L1(Ω, P(z, z)dV) to the holomorphic Besov space Besov(Ω), where P(ζ, z) is the Bergman kernel for Ω.