LIPSCHITZ TYPE INEQUALITY IN WEIGHTED BLOCH SPACE \mathcal{B}_q

KI SEONG CHOI

ABSTRACT. Let B be the open unit ball with center 0 in the complex space \mathbb{C}^n . For each q>0, \mathcal{B}_q consists of holomorphic functions $f:B\to\mathbb{C}$ which satisfy

$$\sup_{z \in B} (1 - \parallel z \parallel^2)^q \parallel \nabla f(z) \parallel < \infty.$$

In this paper, we will show that functions in weighted Bloch spaces \mathcal{B}_q (0 < q < 1) satisfies the following Lipschitz type result for Bergman metric β :

$$|f(z) - f(w)| < C\beta(z, w)$$

for some constant C.

1. Introduction

Throughout this paper, \mathbb{C}^n will be the Cartesian product of n copies of complex plane \mathbb{C} . For $z=(z_1,z_2,\ldots,z_n)$ and $w=(w_1,w_2,\ldots,w_n)$ in \mathbb{C}^n , the inner product is defined by $\langle z,w\rangle=\sum_{j=1}^n z_j\overline{w_j}$ and the norm by $\|z\|^2=\langle z,z\rangle$.

Let B be the open unit ball with center 0 in the complex space \mathbb{C}^n . The boundary of B is the unit sphere $S = \{z \in \mathbb{C}^n : ||z|| = 1\}$. For $z \in B, \xi \in \mathbb{C}^n$, set

$$b_B^2(z,\xi) = \frac{n+1}{(1-\|z\|^2)^2} [(1-\|z\|^2)\|\xi\|^2 + |\langle z,\xi\rangle|^2].$$

Received May 16, 2001. Revised September 12, 2001.

 $^{2000 \ \}mathrm{Mathematics} \ \mathrm{Subject} \ \mathrm{Classification:} \ \ 32\mathrm{H}25, \ 32\mathrm{E}25, \ 30\mathrm{C}40.$

Key words and phrases: Bergman metric, weighted Bloch spaces, Besov space, BMO.

If $\gamma:[0,1]\to B$ is a $C^1-\text{curve},$ the Bergman length of γ is defined by

$$|\gamma|_B = \int_0^1 b_B(\gamma(t), \gamma'(t)) dt.$$

For $z, w \in B$, define

$$\beta(z, w) = \inf\{|\gamma|_B : \gamma(0) = z, \gamma(1) = w\},\$$

where the infimum is taken over all C^1 -curves from z to w. β is called the Bergman metric on B.

For a in B and r > 0, let $E(a,r) = \{z \in B : \beta(a,z) < r\}$ be the open ball in the Bergman metric with center a and radius r. Let ν be the Lebesgue measure in \mathbb{C}^n normalized by $\nu(B) = 1$. Let |E(a,r)| be the $d\nu$ -volume measure of E(a,r). Given a function f in $L^2(B,d\nu)$, let

$$\hat{f}_r(z) = \frac{1}{|E(z,r)|} \int_{E(z,r)} f(w) d\nu(w)$$

be the mean of f over E(z, r). The mean oscillation of f in the Bergman metric is the function $MO_rf(z)$ defined on B by

$$MO_r f(z) = \left[\frac{1}{|E(z,r)|} \int_{E(z,r)} |f(w) - \hat{f}_r(z)|^2 d\nu(w) \right]^{\frac{1}{2}}.$$

We define $BMO_r(B)$ to be the space of all f such that MO_rf is bounded on B. We equip $BMO_r(B)$ with the semi-norm

$$|| f ||_r = \sup \{ MO_r f(z) : z \in B \}.$$

It was proved in [3] that $BMO_r(B)$ is independent of r and all the semi-norm $\|\cdot\|_r$ are mutually equivalent. Thus we simply write BMO for $BMO_r(B)$.

BMO in the Bergman metric was first exhibited in [2, 3] where BMO was used to characterize the boundedness of Hankel operators on the Bergman spaces. Suppose f is in L^1 $(B, d\nu)$. The Berezin transform of f is defined by

$$\tilde{f}(z) = \frac{1}{K(z,z)} \int_{B} |K(z,w)|^2 f(w) d\nu(w),$$

where K(z, w) is the Bergman reproducing kernel. It was proved in [3] that for f in L^2 $(B, d\nu)$, we have $f \in BMO$ if and only if the function $|\widetilde{f}|^2(z) - |\widetilde{f}(z)|^2$ is bounded in B. Moreover

$$|| f ||_{BMO} = \sup \{ \left[\widetilde{|f|^2}(z) - |\widetilde{f}(z)|^2 \right]^{\frac{1}{2}} : z \in B \}$$

is a complete and invariant semi-norm on BMO.

Let H(B) be the space of all holomorphic functions on B. In Section 2, we will show that if $f \in L^1(B, d\nu) \cap H(B)$, then $\tilde{f}(z) = cf(z)$ for some constant c.

If $f \in H(B)$, then the quantity Qf is defined by

$$Qf(z) = \sup_{\|\xi\|=1} \frac{|\nabla f(z) \cdot \xi|}{b_B(z,\xi)}, \quad z \in B, \quad \xi \in \mathbb{C}^n,$$

where $\nabla f(z)=(\frac{\partial f}{\partial z_1},\cdots,\frac{\partial f}{\partial z_n})$ is the holomorphic gradient of f. The quantity Qf is invariant under the group $\operatorname{Aut}(B)$ of holomorphic automorphisms of B. Namely, $Q(f\circ\varphi)=(Qf)\circ\varphi$ for all $\varphi\in\operatorname{Aut}(B)$. A holomorphic function $f:B\to\mathbb{C}$ is called a Bloch function if

$$\sup_{z\in B}Qf(z)<\infty.$$

Bloch functions on bounded homogeneous domains were first studied in [5]. In [12], Timoney showed that the linear space of all holomorphic functions $f: B \to \mathbb{C}$ which satisfy

$$\sup_{z \in B} (1 - \parallel z \parallel^2) \parallel \nabla f(z) \parallel < \infty$$

is equivalent to the space \mathcal{B} of Bloch functions on B.

It was shown in [3] that $BMO \cap H(B) = \mathcal{B}(B)$. Moreover the above seminorm for the Bloch functions is equivalent to the BMO-norm $\parallel f \parallel_{BMO}$ for holomorphic functions.

For each q > 0, the weighted Bloch space of B, denoted by \mathcal{B}_q , consists of holomorphic functions $f : B \to \mathbb{C}$ which satisfy

$$\sup_{z \in B} (1 - \parallel z \parallel^2)^q \parallel \triangledown f(z) \parallel < \infty.$$

For each q > 0, we let $\mathcal{B}_{q,0}$ denote the subspace of \mathcal{B}_q consisting of functions f with

$$\lim_{\|z\| \to 1^{-}} (1 - \|z\|^{2})^{q} \| \nabla f(z) \| = 0.$$

The family of weighted Bloch spaces \mathcal{B}_q is an increasing family with respect to q in the sense that $\mathcal{B}_{q_1} \subset \mathcal{B}_{q_2}$ for $q_1 < q_2$. In particular, $\mathcal{B}_1 = \mathcal{B}$ and $\mathcal{B}_{1,0} = \mathcal{B}_0$. Let us define a norm on \mathcal{B}_q as follows:

$$|| f ||_{q} = |f(0)| + \sup\{(1 - || w ||^{2})^{q} || \nabla f(w) || : w \in B\}.$$

It was proved in [7] that the space \mathcal{B}_q is a Banach space with respect to the above norm for each q > 0, and that the little Bloch space $\mathcal{B}_{q,0}$ associated with \mathcal{B}_q is a separable subspace of \mathcal{B}_q which is the closure of the polynomials for each $q \geq 1$.

Let D be the open unit disk in the complex plane \mathbb{C} . It was proved in [15] that an analytic function f defined on D belongs to the Bloch space if and only if $|f(z) - f(w)| \leq C\delta(z, w)$ for some constant C and all z, w in D where δ is the Bergman distance on D. The purpose of this paper is to extend the above Lipschitz type inequality to the case of n-dimensional complex space.

In particular, in Section 3, we will show that if $f \in \mathcal{B}_q, \ 0 < q < 1$, then

$$|f(z) - f(w)| \le C\beta(z, w)$$

for some constant C where β is the Bergman metric on B.

2. Berezin transform of f in $L^1(B, d\nu) \cap H(B)$

Let $a \in B$ and let P_a be the orthogonal projection of \mathbb{C}^n onto the subspace generated by a, which is given by $P_0 = 0$, and

$$P_a z = \frac{\langle z, a \rangle}{\langle a, a \rangle} a \quad \text{if} \quad a \neq 0.$$

Let $Q_a = I - P_a$. Define φ_a on B by

$$arphi_a(z) = rac{a - P_a z - \sqrt{1 - \left|a
ight|^2} Q_a z}{1 - \left\langle z, a
ight
angle}.$$

It is easily shown that the mapping φ_a belongs to $\operatorname{Aut}(B)$ where $\operatorname{Aut}(B)$ is the group of all biholomorphic mappings of B onto itself, and satisfies $\varphi_a(0) = a$, $\varphi_a(a) = 0$ and $\varphi_a(\varphi_a(z)) = z$. Furthermore, for all $z, w \in \overline{B}$, we have

$$1 - \langle \varphi_a(z), \varphi_a(w) \rangle = \frac{(1 - \|a\|^2)(1 - \langle z, w \rangle)}{(1 - \langle z, a \rangle)(1 - \langle a, w \rangle)}.$$

In particular, for $a \in B$, $z \in \overline{B}$,

$$1 - \| \varphi_a(z) \|^2 = \frac{(1 - \| a \|^2)(1 - \| z \|^2)}{|1 - \langle z, a \rangle|^2}$$

(See [9, Theorem 2.2.2]).

THEOREM 1. Let ψ be a biholomorphic mapping of B onto itself and $a = \psi^{-1}(0)$. The determinant $J_R\psi$ of the real Jacobian matrix of ψ satisfies the following identity:

$$J_R \psi(z) = \left| J \psi(z) \right|^2 = \left(\frac{1 - \| a \|^2}{\left| 1 - \langle z, a \rangle \right|^2} \right)^{n+1} = \left(\frac{1 - \| \psi(z) \|^2}{1 - \| z \|^2} \right)^{n+1}.$$

Proof. See [9, Theorem 2.2.6].

The measure μ_q is the weighted Lebesgue measure:

$$d\mu_q = c_q (1 - ||z||^2)^q d\nu(z),$$

where q>-1 is fixed, and c_q is a normalization constant such that $\mu_q(B)=1.$

THEOREM 2. If $f \in L^1(B, \mu_q) \cap H(B), q > -1$, then

$$f(z) = c_q \int_B \frac{(1 - \|w\|^2)^q}{(1 - \langle z, w \rangle)^{n+q+1}} f(w) d\nu(w).$$

Proof. Since $f \in H(B)$, by the mean value theorem,

$$f(0) = \int_{S} f(r\zeta)d\sigma(\zeta), \quad 0 < r < 1.$$

By integrating both sides of above equality with respect to the measure $2n(1-r^2)^q r^{2n-1}dr$ over [0,1], we have

$$2n \int_0^1 \int_S f(r\zeta)(1-r^2)^q r^{2n-1} d\sigma(\zeta) dr = f(0)c_q^{-1}.$$

Namely,

$$f(0) = c_q \int_{\mathbb{R}} f(w)(1 - ||w||^2)^q d\nu(w).$$

Replace f by $f \circ \varphi_z$ and apply Theorem 1. Then

$$f(z) = c_{q} \int_{B} f(w)(1 - \|\varphi_{z}(w)\|^{2})^{q} \left(\frac{(1 - \|z\|^{2})}{|1 - \langle w, z \rangle|^{2}}\right)^{n+1} d\nu(w)$$

$$= c_{q} \int_{B} f(w) \left(\frac{(1 - \|z\|^{2})(1 - \|w\|^{2})}{|1 - \langle w, z \rangle|^{2}}\right)^{q}$$

$$\times \left(\frac{(1 - \|z\|^{2})}{|1 - \langle w, z \rangle|^{2}}\right)^{n+1} d\nu(w)$$

$$= c_{q}(1 - \|z\|^{2})^{n+q+1} \int_{B} f(w) \frac{(1 - \|w\|^{2})^{q}}{|1 - \langle w, z \rangle|^{2(n+q+1)}} d\nu(w)$$

$$= c_{q}(1 - \|z\|^{2})^{n+q+1}$$

$$\times \int_{B} f(w) \frac{(1 - \|w\|^{2})^{q}}{(1 - \langle w, z \rangle)^{n+q+1} (1 - \langle z, w \rangle)^{n+q+1}} d\nu(w).$$

Replacing f(w) again by $f(w)(1-\langle w,z\rangle)^{n+q+1}$, we get

$$f(z)(1 - ||z||^2)^{n+q+1}$$

$$= c_q (1 - ||z||^2)^{n+q+1} \int_B f(w) \frac{(1 - ||w||^2)^q}{(1 - \langle z, w \rangle)^{n+q+1}} d\nu(w).$$

$$f(z) = c_q \int_B \frac{(1 - ||w||^2)^q}{(1 - \langle z, w \rangle)^{n+q+1}} f(w) d\nu(w).$$

THEOREM 3. If $f \in L^1(B, d\nu) \cap H(B)$, then $c_{n+1}\tilde{f}(z) = f(z)$. Here c_{n+1} is a normalization constant such that $\mu_{n+1}(B) = 1$, where $d\mu_{n+1} = c_{n+1}(1 - ||z||^2)^q d\nu(z)$.

Proof. It is well known that

$$K(z,w) = \frac{1}{(1 - \langle z, w \rangle)^{n+1}}$$

in the case of open unit ball B in \mathbb{C}^n .

$$\begin{split} \tilde{f}(z) &= \frac{1}{K(z,z)} \int_{B} |K(z,w)|^{2} f(w) d\nu(w) \\ &= (1 - |z|^{2})^{n+1} \int_{B} \frac{1}{(1 - \langle z,w \rangle)^{2(n+1)}} f(w) d\nu(w) \\ &= (1 - |z|^{2})^{n+1} \int_{B} \frac{(1 - ||w||^{2})^{n+1}}{(1 - \langle z,w \rangle)^{n+1+n+1}} \frac{f(w)}{(1 - ||w||^{2})^{n+1}} d\nu(w). \end{split}$$

Since $f \in L^1(B, d\nu) \cap H(B)$,

$$\frac{f(w)}{(1-\parallel w\parallel^2)^{n+1}}\in L^1(B,\mu_{n+1})\cap H(B).$$

By Theorem 2,

$$\begin{split} &\frac{f(z)}{(1-\parallel z\parallel^2)^{n+1}}\\ &=c_{n+1}\int_{\mathcal{B}}\frac{(1-\parallel w\parallel^2)^{n+1}}{(1-\langle z,w\rangle)^{n+1+n+1}}\frac{f(w)}{(1-\parallel w\parallel^2)^{n+1}}d\nu(w). \end{split}$$

We can see that

$$\tilde{f}(z) = (1 - \| z \|^2)^{n+1} \frac{f(z)}{(1 - \| z \|^2)^{n+1}} \frac{1}{c_{n+1}}$$
$$= \frac{1}{c_{n+1}} f(z).$$

3. Lipschitz type result in \mathcal{B}_q , 0 < q < 1

THEOREM 4. For $z \in B$, c is real, t > -1, define

$$I_{c,t}(z) = \int_{B} \frac{(1 - ||w||^{2})^{t}}{|1 - \langle z, w \rangle|^{n+1+c+t}} d\nu(w), \quad z \in B.$$

Then,

- (i) $I_{c,t}(z)$ is bounded in B if c < 0;

$$\begin{array}{l} \text{(ii) } I_{0,t}(z) \sim -\log(1-\parallel z\parallel^2) \text{ as } \parallel z\parallel \to 1^-; \\ \text{(iii) } I_{c,t}(z) \sim (1-\parallel z\parallel^2)^{-c} \text{ as } \parallel z\parallel \to 1^- \text{ if } c>0. \\ \end{array}$$

Proof. See [9, Proposition 1.4.10].

Let $0 and <math>s \in \mathbb{R}$. The holomorphic Besov p-spaces $\mathcal{B}_p^s(B)$ with weight s is defined by the space of all holomorphic functions f on the unit ball B such that

$$|| f ||_{p,s} = \left\{ \int_{B} (Qf)^{p}(z) (1 - || z ||^{2})^{s} d\lambda(z) \right\}^{\frac{1}{p}} < \infty.$$

Here $d\lambda(z) = (1 - ||z||^2)^{-n-1} d\nu(z)$ is an invariant volume measure with respect to the Bergman metric on B.

For a fixed $p \in (0, \infty)$, $\mathcal{B}_p^s(B)$ is an increasing family of function spaces in s; that is, if $-\infty < s \le t < +\infty$, then $\mathcal{B}_p^s(B) \subset \mathcal{B}_p^t(B)$. Similarly, for a fixed $s \in R$, the family $\mathcal{B}_{p}^{s}(B)$ is increasing with respect to $p \in (0, n-s)$. The holomorphic Besov p-space $\mathcal{B}_p^s(B)$ with weight s include many well known spaces as special case. $\mathcal{B}_p^s(B)$ is the usual Hardy p-space $H^p(B)$ for s=n, the Bergman space $L^p_a(B)$ for s=n+1(See [1]). In particular, the diagonal Besov space $\mathcal{B}_p^0(B)$ are shown to be Möbius invariant subsets of the Bloch space.

THEOREM 5. Let $0 and <math>s \in \mathbb{R}$. Then

$$\mathcal{B}_q \subseteq \mathcal{B}_p^s$$
,

where $q < 1 + \frac{s-n}{p}$.

Proof. From the fact that Qf(z) and $(1-||z||^2) || \nabla f(z) ||$ behave the same within constants as $||z|| \to 1$ (See [12]), we may replace Qf(z) by $(1-||z||^2) || \nabla f(z) ||$ with a different constant C in the definition of $||f||_{p,s}$. Namely,

$$\| f \|_{p,s}^{p} = \int_{B} (Qf)^{p}(z)(1 - \| z \|^{2})^{s} d\lambda(z)$$

$$\leq C \int_{B} \left[(1 - \| z \|^{2}) \| \nabla f(z) \| \right]^{p} (1 - \| z \|^{2})^{s} d\lambda(z)$$

$$\leq C \int_{B} \left[\frac{(1 - \| z \|^{2})^{q} \| \nabla f(z) \|}{(1 - \| z \|^{2})^{q-1}} \right]^{p} (1 - \| z \|^{2})^{s} d\lambda(z)$$

$$\leq C \| f \|_{q}^{p} \int_{B} (1 - \| z \|^{2})^{-pq+p+s-n-1} d\nu(z).$$

By Theorem 4, if $q < 1 + \frac{s-n}{p}$, then

$$|| f ||_{p,s} \leq C || f ||_q$$

which yields the desired result.

THEOREM 6. Let $p \in (1, \infty)$ and -p < s < 0. Then there exists a positive constant C such that

$$|f(z) - f(a)| \le \frac{C}{\|z - a\|^{\frac{s}{p}}} \|f\|_{p,s}, \quad a, z \in B$$

for all M-harmonic functions f on B. In particular, $f \in \mathcal{B}_p^s$ satisfies the Lipschitz condition of order -s/p.

Proof. See [6, Theorem 1.4].
$$\Box$$

COROLLARY 7. Let $q \in (0,1)$. If the function f in \mathcal{B}_q , then there exist constants C > 0 and t > 0 such that for all $z, w \in B$,

$$|f(z) - f(w)| \le C ||z - w||^t ||f||_q$$
.

Proof. If we choose $p \in (1, \infty)$ and $s \ (-p < s < 0)$ such that $q < 1 + \frac{s-n}{p}$, then

$$|f(z) - f(w)| \le C \|z - w\|^{-\frac{s}{p}} \|f\|_q$$

follows from Theorem 5 and Theorem 6.

THEOREM 8. For any smooth curve $\gamma: I \to B$ and any f in BMO, we have

 $|\frac{d}{dt}\tilde{f}(\gamma(t))| \leq 2\sqrt{2} \left(\frac{ds}{dt}\right) \parallel f \parallel_{BMO(\gamma(I))}.$

Proof. See [3].

COROLLARY 9. For f in BMO,

$$|\tilde{f}(a) - \tilde{f}(b)| \le 2\sqrt{2} \| f \|_{BMO} \beta(a, b).$$

Proof. Choose γ in Theorem 8 to be a geodesic joining a to b of length $\beta(a,b)$.

Theorem 10. For f in \mathcal{B}_q , 0 < q < 1,

$$|f(a) - f(b)| \le c_{n+1}\beta(a, b).$$

Proof. If $f \in \mathcal{B}_q$, 0 < q < 1, then

$$|f(z)| < |f(0)| + C ||z||^t ||f||_q$$

for some constant C > 0 and t > 0 by Corollary 7. Since

$$|f(z)| \le |f(0)| + C \parallel f \parallel_{a}$$

for all $z \in B$, $f \in L^1(B, d\nu) \cap H(B)$. By Theorem 3,

$$|f(a) - f(b)| = |c_{n+1}\tilde{f}(a) - c_{n+1}\tilde{f}(b)|$$

 $\leq c_{n+1}\beta(a,b).$

References

- [1] F. Beatrous and J. Burbea, *Holomorphic Sobolev spaces on the ball*, Dissertationes Math. (Rozprawy Mat.) **276** (1989), 1–57.
- [2] C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1998), 921–953.
- [3] D. Bekolle, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310-350.

- [4] L. Brown and A. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1988), 296-304.
- [5] K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canad. J. Math. 27 (1975), 446–458.
- [6] K. T. Hahn and E. H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions in the unit ball, J. Math. Anal. Appl. 175 (1993), 206-221.
- [7] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^n , J. Korean Math. Soc. 35 (1998), 171–189.
- [8] M. Peleso, Mobius invariant spaces on the unit ball, Ph.D. thesis. Washington University, St. Louis, 1990.
- [9] W. Rudin, Function theory in the unit ball of Cⁿ, Springer Verlag, New York, 1980.
- [10] K. Shaw, Tangential limits and exceptional sets for holomorphic Besov functions in the unit ball in Cⁿ (preprint).
- [11] D. Stegenga, Bounded Toeplitz operators on H^1 and applications of the duality between H^1 and the functions of bounded mean oscillation, Amer. J. Math. 98 (1976), 573–589.
- [12] R. M. Timoney, Bloch functions in several complex variables I, Bull. London Math. Soc. 12 (1980), 241–267.
- [13] K. H. Zhu, Multipliers of BMO in the Bergman metric with applications to Toeplitz operators, J. Funct. Anal. 87 (1989), 31-50.
- [14] _____, Analytic Besov spaces, J. Math. Anal. Appl. 157 (1991), 318-336.
- [15] _____, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177.

Department of Mathematics Konyang university Nonsan 320-711, Korea

E-mail: ksc@kytis.konyang.ac.kr