LITTLE HANKEL OPERATORS ON WEIGHTED BLOCH SPACES IN \mathbb{C}^n

KI SEONG CHOI

ABSTRACT. Let B be the open unit ball in \mathbb{C}^n and $\mu_q(q>-1)$ the Lebesgue measure such that $\mu_q(B)=1$. Let $L^2_{a,q}$ be the subspace of $L^2(B,d\mu_q)$ consisting of analytic functions, and let $\overline{L^2_{a,q}}$ be the subspace of $L^2(B,d\mu_q)$ consisting of conjugate analytic functions. Let \overline{P} be the orthogonal projection from $L^2(B,d\mu_q)$ into $\overline{L^2_{a,q}}$. The little Hankel operator $h^q_\varphi:L^2_{a,q}\to\overline{L^2_{a,q}}$ is defined by $h^q_\varphi(\cdot)=\overline{P}(\varphi\cdot)$. In this paper, we will find the necessary and sufficient condition that the little Hankel operator h^q_φ is bounded(or compact).

1. Introduction

Let D denote the open unit disk in the complex plane \mathbb{C} , and let $d\eta$ denote the usual normalized area measure on D. The Bergman space $L_a^2(D,d\eta)$ is the Hilbert space of analytic functions $g:D\to\mathbb{C}$ with inner product given by

$$< f, g > = \int_{D} f(z) \overline{g(z)} d\eta(z).$$

Let P denote the orthogonal projection on $L^2(D, d\eta)$ onto $L^2_a(D, d\eta)$, so (I - P) is the orthogonal projection of $L^2(D, d\eta)$ onto $(L^2_a(D, d\eta))^{\perp}$. For $f \in L^{\infty}(D, d\eta)$, the Hankel operator

$$H_f: L^2_a(D,d\eta) \to (L^2_a(D,d\eta))^\perp$$

is defined by

$$H_f(g) = (I - P)(fg).$$

Received October 1, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 32H25, 32E25, 30C40.

Key words and phrases: Bergman space, little Hankel operator, weighted Bloch space.

It is useful to consider Hankel operator H_f for $f \in L^2(D, d\eta)$. As usual, $H^{\infty}(D)$ denotes the set of bounded analytic functions on D. For $f \in L^2(D, d\eta)$, H_f maps $H^{\infty}(D)$ into $(L_a^2(D, d\eta))^{\perp}$ by the formula $H_f(g) = (I - P)(fg)$. The set $H^{\infty}(D)$ is dense in $L_a^2(D, d\eta)$. Thus if H_f is a bounded operator, then H_f extends to a bounded operator from $L_a^2(D, d\eta)$ to $(L_a^2(D, d\eta))^{\perp}$, also denoted by H_f .

The Bloch space of D consists of analytic functions f on D such that

$$\sup\{(1-|z|^2)|f'(z)|: z \in D\} < +\infty.$$

The little Bloch space is the set of analytic functions f on D such that

$$(1 - |z|^2)|f'(z)| \to 0 \text{ as } |z| \to 1.$$

In [2], it was shown that for $f \in L^2_a(D, d\eta)$, the Hankel operator $H_{\overline{f}}$ is bounded if and only if f is in the Bloch space in D, and $H_{\overline{f}}$ is compact if and only if f is in the little Bloch space in D.

Let B be the open unit ball in \mathbb{C}^n with normalized volume measure $d\nu$. The Bergman space $L^2_{a,\nu}=L^2_a(B,d\nu)$ consists of those analytic functions which lie in $L^2(B,d\nu)$. Let P denote the orthogonal projection of $L^2(B,d\nu)$ onto $L^2_{a,\nu}$. As usual, $H^{\infty}(B)$ denotes the set of bounded analytic functions on B. The Hankel operator $H_f(\cdot)=(I-P)(\cdot)$ maps $H^{\infty}(B)$ into $(L^2_{a,\nu})^{\perp}$ for $f\in L^2(B,d\nu)$. The set $H^{\infty}(B)$ is dense in $L^2_{a,\nu}$. Thus if $H_f: H^{\infty} \to (L^2_{a,\nu})^{\perp}$ is a bounded operator, then H_f extends to a bounded operator from $L^2_{a,\nu}$ to $(L^2_{a,\nu})^{\perp}$, also denoted by H_f .

a bounded operator from $L^2_{a,\nu}$ to $(L^2_{a,\nu})^{\perp}$, also denoted by H_f . For $z=(z_1,z_2,\cdots,z_n)$ and $w=(w_1,w_2,\cdots,w_n)$ in \mathbb{C}^n , the inner product is defined by $< z,w>=\sum_{j=1}^n z_j\overline{w_j}$ and the norm by $\parallel z\parallel^2=< z,z>$. $\nabla f(z)=(\frac{\partial f}{\partial z_1},\cdots,\frac{\partial f}{\partial z_n})$ is the holomorphic gradient of f. In [8], Timoney showed that the linear space of all analytic functions $f:B\to\mathbb{C}$ which satisfy

$$\sup_{z \in B} (1 - \parallel z \parallel^2) \parallel \nabla f(z) \parallel < \infty$$

is equivalent to the space \mathcal{B} of Bloch functions on B. The little Bloch space \mathcal{B}_0 is the subspace of \mathcal{B} consisting of those functions $f: B \to \mathbb{C}$ which satisfy

$$\lim_{\|z\| \to 1} (1 - \| z \|^2) \| \nabla f(z) \| = 0.$$

In [4], it was shown that for $f \in L^2_{a,\nu}$, the Hankel operator $H_{\overline{f}}$ is bounded if and only if $f \in \mathcal{B}$, and $H_{\overline{f}}$ is compact if and only if $f \in \mathcal{B}_0$.

For each q > 0, the weighted Bloch space of B, denoted by \mathcal{B}_q , consists of analytic functions $f: B \to \mathbb{C}$ which satisfy

$$\sup_{z \in B} (1 - \parallel z \parallel^2)^q \parallel \nabla f(z) \parallel < \infty.$$

The corresponding little Bloch space $\mathcal{B}_{q,0}$ is defined by the functions f in \mathcal{B}_q such that

$$\lim_{\|z\| \to 1} (1 - \|z\|^2)^q \| \nabla f(z) \| = 0.$$

Let us define a norm on \mathcal{B}_q as follows;

$$|| f ||_q = |f(0)| + \sup\{(1 - || w ||^2)^q || \nabla f(w) || : w \in B\}.$$

For each q > 0, the space \mathcal{B}_q is a Banach space with respect to the above norm (See [5]). It was also shown in [5] that the weighted little Bloch space $\mathcal{B}_{q,0}$ is the closure of the set of polynomials in the norm topology of \mathcal{B}_q for each $q \geq 1$.

The measure $\mu_q(q>-1)$ is the weighted Lebesgue measure

$$d\mu_q = c_q (1 - ||z||^2)^q d\nu(z),$$

where c_q is a normalization constant such that $\mu_q(B)=1$. By $L^2_{a,q}=L^2_a(B,d\mu_q)$, we denote the Bergman subspace of $L^2(B,d\mu_q)$ consisting of analytic functions. We equip $L^2_{a,q}$ with the norm $\parallel f \parallel_{2,q}=(\int_B |f|^2 d\mu_q)^{1/2}$.

Let $\overline{L_{a,q}^2}$ be the closed space of $L^2(B,d\mu_q)$ consisting of conjugate analytic functions, and let

$$\overline{P}: L^2(B, d\mu_q) \to \overline{L^2_{a,q}}$$

be the orthogonal projection. When q=0, \overline{P} is the orthogonal projection from $L^2(B,d\nu)$ onto $\overline{L^2_{a,\nu}}$. If P_0 is the rank 1 projection (onto the constants) defined by $P_0f=\int_B f(z)d\nu(z)$, it is easy to see (See [9]) that

$$\overline{P} - P_0 \le I - P$$
.

For any φ in $L^2(B, d\mu_q)$, the little Hankel operator

$$h_{\varphi}^q:L_{a,q}^2 \to \overline{L_{a,q}^2}$$

is defined by

$$h^q_{\varphi}g = \overline{P}(\varphi g).$$

Suppose that q>0. In Section 3, we will show that if φ is in $L^2_{a,q}\cap \mathcal{B}_{q+1}$, then the little Hankel operator h^q_{φ} is bounded on $L^2_{a,q}$. We will also show that if φ is in $L^2_{a,q}\cap \mathcal{B}_{q+1,0}$, then h^q_{φ} is compact on $L^2_{a,q}$. Conversely, we will show that if $h^q_{\overline{\varphi}}(\varphi\in L^2_{a,q})$ is bounded on $L^2_{a,q}$, then φ is in \mathcal{B}_{q+1} . We will also show that if $h^q_{\overline{\varphi}}$ is compact on $L^2_{a,q}$, then φ is in $\mathcal{B}_{q+1,0}$.

2. Some integral representation in weighted Bloch spaces

Fix a point $z \in B$. The functional e_z given by $e_z(f) = f(z), f \in L^2_{a,q}$, is continuous. By the Riesz representation theorem, there exists a function $k_{q,z} \in L^2_{a,q}$ such that

$$f(z) = \int_B f(w) \overline{k_{q,z}(w)} d\mu_q(w), z \in B.$$

Let us define the function $K_q(w, z)$ as $K_q(w, z) = k_{q,z}(w)$.

It is easily seen that $\{z^{\alpha}\}$, where α ranges over the set of multiindices, is an orthogonal basis in $L^2_{a,q}$. An integration shows that

$$\parallel z^{\alpha} \parallel_{2,q} = \frac{\alpha! \Gamma(q+n+1)}{\Gamma(|\alpha|+q+n+1)}$$

and thus the reproducing kernel is

$$K_{q}(z, w) = \sum_{k=0}^{\infty} \sum_{|\alpha|=k} \frac{z^{\alpha} \overline{w}^{\alpha}}{\|z^{\alpha}\|_{2,q}}$$

$$= \sum_{k=0}^{\infty} \langle z, w \rangle^{k} \frac{\Gamma(k+q+n+1)}{\Gamma(q+n+1)}$$

$$= \frac{1}{(1-\langle z, w \rangle)^{q+n+1}}$$

(See [1]). In this paper, S is the boundary of B and σ is the rotation invariant surface measure on S normalized by $\sigma(S) = 1$.

THEOREM 1. If $f \in L^1(B, d\mu_q) \cap H(B), q > -1$, then

$$f(z) = \int_{B} \frac{f(w)}{(1 - \langle z, w \rangle)^{n+q+1}} d\mu_{q}(w).$$

PROOF. See [5, Theorem 2].

THEOREM 2. For $z \in B$, c is real, t > -1, define

$$I_{c,t}(z) = \int_{B} \frac{(1 - \| w \|^{2})^{t}}{|1 - \langle z, w \rangle|^{n+1+c+t}} d\nu(w), \quad z \in B.$$

Then,

PROOF. See [7, Proposition 1.4.10].

LEMMA 3. If $g \in L^{\infty}(B)$, then

$$(\mathcal{R}_q g)(z) = \int_{\mathcal{R}} \frac{g(w)}{(1 - \langle z, w \rangle)^{n+q+1}} d\nu(w)$$

is in $\mathcal{B}_{q+1}(q > -1)$.

PROOF. Differentiating

$$(\mathcal{R}_q g)(z) = \int_B \frac{g(w)}{(1 - \langle z, w \rangle)^{n+q+1}} d\nu(w)$$

under the integral sign, we obtain

$$\frac{\partial}{\partial z_j}(\mathcal{R}_q g)(z) = (n+q+1) \int_{B} \frac{g(w)(-\overline{w}_j)}{(1-\langle z,w \rangle)^{n+q+2}} d\nu(w),$$

for $j = 1, 2, \dots, n$. This shows that

$$\| \nabla (\mathcal{R}_q g)(z) \| \le (n+q+1) \| g \|_{\infty} \int_B \frac{d\nu(w)}{|1-\langle z,w \rangle|^{n+q+2}} .$$

By Theorem 2,

$$\| \nabla (\mathcal{R}_q g)(z) \| \le (n+q) \| g \|_{\infty} (1-\| z \|^2)^{-(q+1)}.$$

Thus,

$$(1-\parallel z\parallel^2)^{q+1}\parallel \triangledown(\mathcal{R}_qg)(z)\parallel\ \leq\ C\parallel g\parallel_\infty.$$

It is also clear that $|(\mathcal{R}_q g)(0)| \leq ||g||_{\infty}$. Thus,

$$\| (\mathcal{R}_q g) \|_{q+1}$$

$$= |(\mathcal{R}_q g)(0)| + \sup\{ (1 - \| z \|^2)^{q+1} \| \nabla (\mathcal{R}_q g)(z) \| : z \in B \}$$

$$\leq (C+1) \| g \|_{\infty}.$$

Hence, \mathcal{R}_q maps $L^{\infty}(B)$ boundedly into \mathcal{B}_{q+1} .

Let N denote the set of natural numbers. A multi-index α is an ordered n-tuple $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n)$ with $\alpha_j \in N, j = 1, 2, \dots, n$. For a multi-index α and $z \in \mathbb{C}^n$, set

$$|\alpha| = \alpha_1 + \alpha_2 + \dots + \alpha_n,$$

$$\alpha! = \alpha_1! \alpha_2! \dots \alpha_n!,$$

$$z^{\alpha} = z_1^{\alpha_1} z_2^{\alpha_2} \dots z_n^{\alpha_n}.$$

Let $C(\overline{B})$ be the space of complex-valued continuous functions on the closed unit ball \overline{B} .

THEOREM 4. If $f \in C(\overline{B})$, then $\mathcal{R}_q f$ is in $\mathcal{B}_{q+1,0}$.

PROOF. Let $I = (i_1, i_2, \dots, i_n)$. Since

$$\langle z, w \rangle^m = (z_1 \overline{w}_1 + z_2 \overline{w}_2 + \dots + z_n \overline{w}_n)^m$$

$$= \sum_{|I|=m} \frac{m!}{I!} (z_1 \overline{w}_1)^{i_1} (z_2 \overline{w}_2)^{i_2} \cdots (z_n \overline{w}_n)^{i_n},$$

$$\frac{1}{(1-\langle z,w\rangle)^{n+q+1}}$$

$$= 1 + \sum_{m=1}^{\infty} \frac{(n+q+m)!}{m!(n+q)!} \langle z,w\rangle^{m}$$

$$= 1 + \sum_{m=1}^{\infty} \sum_{|I|=m} \frac{(n+q+m)!}{m!(n+q)!} \frac{m!}{I!} (z_{1}\overline{w}_{1})^{i_{1}} (z_{2}\overline{w}_{2})^{i_{2}} \cdots (z_{n}\overline{w}_{n})^{i_{n}}.$$

Hence,

$$\mathcal{R}_{q}(z^{\alpha}\overline{z}^{\beta})$$

$$= \int_{B} \frac{w^{\alpha}\overline{w}^{\beta}}{(1 - \langle z, w \rangle)^{n+q+1}} d\nu(w)$$

$$= \int_{B} w^{\alpha}\overline{w}^{\beta} d\nu(w) + \sum_{m=1}^{\infty} \sum_{|I|=m} \frac{(n+q+m)!}{m!(n+q)!} \frac{m!}{I!} z^{I} \int_{B} w^{\alpha}\overline{w}^{\beta}\overline{w}^{I} d\nu(w)$$

$$= C_{J}z^{J}$$

for some J and some constant C_J [7, Proposition 1.4.8, Proposition 1.4.9].

By the Stone-Weierstrass approximation theorem, each function in $C(\overline{B})$ can be uniformly approximated by finite linear combinations of functions of the form $z^{\alpha}\overline{z}^{\beta}$, which are mapped by \mathcal{R}_q to polynomials (finite linear combination of monomials). Since \mathcal{R}_q maps $L^{\infty}(B)$ boundedly into \mathcal{B}_{q+1} and $\mathcal{B}_{q+1,0}$ is closed in \mathcal{B}_{q+1} , \mathcal{R}_q maps $C(\overline{B})$ boundedly into $\mathcal{B}_{q+1,0}$.

For $z \in B$, let us define function \mathcal{K}_z by

$$\mathcal{K}_{z}^{2}(w) = \frac{K(w,z)^{2}}{K(z,z)} = \frac{(1-\parallel z\parallel^{2})^{n+1}}{(1-< w,z>)^{2(n+1)}},$$

where K(z, w) is the Bergman reproducing kernel of $L^2(B, d\nu)$. Then the function \mathcal{K}_z is a unit vector in $L^2_a(B, d\nu)$. For analytic function f, $\mathcal{V}_q f$ is the function on B defined by

$$\mathcal{V}_q f(z) = \int_B f(w) \overline{\mathcal{K}_z^2(w)} d\mu_q(w).$$

Theorem 5. If analytic function f is in $L^1(B, d\mu_q)$ and $\mathcal{V}_q f \in L^{\infty}(B)$, then $\mathcal{R}_q(\mathcal{V}_q f) = \frac{1}{c_{n+1}} f$ and $f \in \mathcal{B}_{q+1}$.

PROOF. Applying Fubini's theorem and Theorem 1, we get

$$\begin{split} & (\mathcal{R}_{q}(\mathcal{V}_{q}f))(z) \\ & = \int_{B} (\mathcal{V}_{q}f)(w) \overline{K_{q}(w,z)} d\nu(w) \\ & = \int_{B} \overline{K_{q}(w,z)} \int_{B} f(u) \frac{(1-\parallel w \parallel^{2})^{n+1}}{(1-\langle w,u \rangle)^{2(n+1)}} d\mu_{q}(u) d\nu(w) \end{split}$$

$$= \int_{B} f(u) \int_{B} \frac{(1-\|w\|^{2})^{(n+1)}}{(1-\langle w,u \rangle)^{2(n+1)}} \overline{K_{q}(w,z)} d\nu(w) d\mu_{q}(u)$$

$$= \frac{1}{c_{n+1}} \int_{B} f(u) \overline{K_{q}(u,z)} d\mu_{q}(u)$$

$$= \frac{1}{c_{n+1}} f(z).$$

Thus $V_q f \in L^{\infty}(B)$ implies that $f \in \mathcal{B}_{q+1}$ by Lemma 3.

3. Little Hankel operator on weighted Bloch spaces

Theorem 6. Suppose q > 1. Then f is in \mathcal{B}_q if and only if f is analytic and $(1 - \|z\|^2)^{q-1} |f(z)|$ is bounded on B.

THEOREM 7. If φ is in $L^2_{a,q} \cap \mathcal{B}_{q+1}(q > 0)$, then h^q_{φ} is bounded on $L^2_{a,q}$.

PROOF. Since \overline{P} is given by

$$\overline{P}g(z) = \int g(w)\overline{K_q(z,w)}d\mu_q(w), \ g \in L^2(B,d\mu_q),$$

the little Hankel operator has the following integral form:

$$\begin{split} h_{\varphi}^{q}g(z) &= \int_{B} \varphi(w)g(w)\overline{K_{q}(z,w)}d\mu_{q}(w) \\ &= \int_{B} \frac{\varphi(w)g(w)}{(1-< w,z>)^{n+q+1}}d\mu_{q}(w). \end{split}$$

Given f and g in H^{∞} , we can apply Fubini's Theorem and Theorem 1 to obtain

$$\langle h_{\varphi}^{q} f, \overline{g} \rangle = \int_{B} g(z) d\mu_{q}(z) \int_{B} \varphi(w) f(w) \overline{K_{q}(z, w)} d\mu_{q}(w)$$

$$= \int_{B} \varphi(w) f(w) d\mu_{q}(w) \int_{B} g(z) \overline{K_{q}(z, w)} d\mu_{q}(z)$$

$$= \int_{B} \varphi(w) f(w) g(w) d\mu_{q}(w)$$

$$= c_{q} \int_{B} f(w) g(w) \varphi(w) (1 - ||w||^{2})^{q} d\nu(w).$$

By Theorem 6, there exists a constant C > 0 such that

$$|< h_{\varphi}^q f, \overline{g}>| \leq C \parallel \varphi \parallel_{q+1} \parallel fg \parallel_{L^1} \leq C \parallel \varphi \parallel_{q+1} \parallel f \parallel_{\infty} \parallel g \parallel_{\infty}$$
 for all f and g in H^{∞} . This shows that the operator h_{φ}^q is bounded on $L_{a,q}^2$ with $\parallel h_{\varphi}^q \parallel \leq C \parallel \varphi \parallel_{q+1}$.

THEOREM 8. Suppose that q > 0. If φ is in $L_{a,q}^2 \cap \mathcal{B}_{q+1,0}$, then h_{φ}^q is compact on $L_{a,q}^2$.

PROOF. If φ is a polynomial, then h_{φ}^q is a finite rank operator. Since finite rank operator is compact, h_{φ}^q is compact. For each φ in $\mathcal{B}_{q+1,0}$, there exists a sequence of polynomials $\{p_n\}$ such that

$$\|\varphi-p_n\|_{q+1}\rightarrow 0$$

as $n \to +\infty$. Since

$$\parallel h_{\varphi}^{q} - h_{p_{n}}^{q} \parallel \leq \parallel \varphi - p_{n} \parallel_{q+1} \rightarrow 0$$

as $n \to +\infty$ by Theorem 7, h_{ω}^q is compact.

THEOREM 9. Suppose that q > 0 and $\varphi \in L^2_{a,q}$. If $h^q_{\overline{\varphi}}$ is bounded on $L^2_{a,q}$, then φ is in \mathcal{B}_{q+1} .

PROOF. For $z \in B$, recall that $\mathcal{K}_z(w) = \frac{(1-\|z\|^2)^{\frac{n+1}{2}}}{(1-\langle w,z\rangle)^{n+1}}$ is a unit vector in $L^2_a(B,d\nu)$.

$$\begin{split} &< \overline{\mathcal{K}_z}, h_{\overline{\varphi}}^q \mathcal{K}_z > \\ &= \int_B \overline{\mathcal{K}_z(w)} \, \overline{h_{\overline{\varphi}}^q \mathcal{K}_z(w)} d\mu_q(w) \\ &= \int_B \overline{\mathcal{K}_z(w)} \int_B \frac{\overline{\varphi}(u) \mathcal{K}_z(u)}{(1 - \langle u, w \rangle)^{n+q+1}} d\mu_q(u) d\mu_q(w) \\ &= \int_B \overline{\mathcal{K}_z(u)} \varphi(u) \overline{\int_B \frac{\mathcal{K}_z(w)}{(1 - \langle u, w \rangle)^{n+q+1}} d\mu_q(w) d\mu_q(u) \\ &= \int_B \overline{\mathcal{K}_z(u)} \varphi(u) \overline{\int_B \frac{(1 - \|z\|^2)^{\frac{n+1}{2}}}{(1 - \langle u, w \rangle)^{n+q+1} (1 - \langle w, z \rangle)^{n+1}} d\mu_q(w) d\mu_q(u) \\ &= \int_B \overline{\mathcal{K}_z(u)} \varphi(u) \overline{\frac{(1 - \|z\|^2)^{\frac{n+1}{2}}}{(1 - \langle u, z \rangle)^{n+1}} d\mu_q(u) \\ &= \int_B \varphi(u) \overline{\mathcal{K}_z^2(u)} d\mu_q(u) \\ &= \mathcal{V}_q \varphi(z). \end{split}$$

The function $\mathcal{V}_q \varphi$ is in L^{∞} with $\| \mathcal{V}_q \varphi \|_{\infty} \leq \| h_{\overline{\varphi}}^q \|$. By Theorem 5, we have $\varphi \in \mathcal{B}_{q+1}$.

THEOREM 10. Suppose that q > 0 and φ is in $L^2_{a,q}$. If $h^q_{\overline{\varphi}}$ is compact on $L_{a,q}^2$, then φ is in $\mathcal{B}_{q+1,0}$.

PROOF. Suppose that $h^q_{\overline{\varphi}}$ is compact on $L^2_{a,q}$. If f is in $H^{\infty}(B)$, then

$$\langle f, \mathcal{K}_{z} \rangle = \int_{B} f(w) \overline{\mathcal{K}_{z}(w)} d\mu_{q}(w)$$

$$= \int_{B} f(w) \frac{(1 - \|z\|^{2})^{\frac{n+1}{2}}}{(1 - \langle z, w \rangle)^{n+1}} d\mu_{q}(w)$$

$$= (1 - \|z\|^{2})^{\frac{n+1}{2}} \int_{B} \frac{f(w)}{(1 - \langle z, w \rangle)^{n+1}} d\mu_{q}(w).$$

$$| \langle f, \mathcal{K}_{z} \rangle | = (1 - ||z||^{2})^{\frac{n+1}{2}} | \int_{B} \frac{f(w)}{(1 - \langle z, w \rangle)^{n+1}} d\mu_{q}(w) |$$

$$\leq (1 - ||z||^{2})^{\frac{n+1}{2}} ||f||_{\infty} c_{q} \int_{B} \frac{(1 - ||w||^{2})^{q}}{|(1 - \langle z, w \rangle)|^{n+1}} d\nu(w)$$

$$\leq M(1 - ||z||^{2})^{\frac{n+1}{2}}$$

for some constant M. The last inequality follows from Theorem 2. This implies that

$$|\langle f, \mathcal{K}_z \rangle| \leq M(1-\parallel z\parallel^2)^{\frac{n+1}{2}} \rightarrow 0$$

as $||z|| \to 1^-$. Since $H^{\infty}(B)$ is dense in $L^2_{a,q}(B)$, this shows that $\mathcal{K}_z \to 0$ weakly in $L_{a,q}^2$ as $\parallel z \parallel \rightarrow 1^-$. Since $\mathcal{K}_z \rightarrow 0$ weakly in L_a^2 as $\parallel z \parallel \rightarrow 1^-$,

$$\mathcal{V}_q \varphi(z) = \langle \overline{\mathcal{K}}_z, h^q_{\overline{\varphi}} \mathcal{K}_z \rangle \rightarrow 0$$

as $||z|| \to 1^-$. Since $\mathcal{V}_q \varphi \in C(\overline{B})$, $\mathcal{R}_q \mathcal{V}_q \varphi \in \mathcal{B}_{q+1,0}$ by Theorem 4. Since $\mathcal{R}_q \mathcal{V}_q \varphi = \frac{1}{c_{n+1}} \varphi$ by Theorem 5, we have $\varphi \in \mathcal{B}_{q+1,0}$.

References

[1] J. Arazy, S. D. Fisher, and J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054.

- [2] S. Axler, The Bergman spaces, the Bloch space and commutators of multiplication operators, Duke Math. J. 53, 315-332.
- [3] C. A. Berger, L. A. Coburn, and K. H. Zhu, Function theory on Cartan domain and the Berezin-Toeplitz symbol calculus, Amer. J. Math. 110 (1988), 921–953.
- [4] D. Bekolle, C. A. Berger, L. A. Coburn, and K. H. Zhu, BMO in the Bergman metric on bounded symmetric domain, J. Funct. Anal. 93 (1990), 310–350.
- [5] K. T. Hahn and K. S. Choi, Weighted Bloch spaces in \mathbb{C}^n , J. Korean Math. Soc. **35** (1998), 171–189.
- [6] S. Janson, J. peetre, and R. Rochberg, Hankel Forms and the Fock Space, Revista Math. Ibero-amer 3 (1987), 61–138.
- [7] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer Verlag, New York (1980).
- [8] R. M. Timoney, *Bloch functions of several variables*, J. Bull. London Math. Soc **12** (1980), 241–267.
- [9] K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Analysis 81 (1988), 262–278.
- [10] _____, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177.

Department of Mathematics Konyang university Nonsan 320-711, Korea *E-mail*: ksc@konyang.ac.kr