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THE GROWTH OF BLOCH FUNCTIONS IN SOME SPACES

WENWAN YANG AND JUNMING ZHUGELIU

ABSTRACT. Suppose f belongs to the Bloch space with f(0) = 0. For
0<r<1landO0<p< oo, we show that

27 . 1/p
M) = (52 [ 50 par)

(TG NP\
“\TE+1-k) pB(Oglfﬂ) ’

where pg(f) = sup,cp(l — [2]?)|f'(2)| and k is the integer satisfying
0 < p — 2k < 2. Moreover, we prove that for 0 <r <1 and p > 1,

1/q
frllB, <7 pB(f) (m) ’

where fr(z) = f(rz) and || - || 5, is the Besov seminorm given by

Ifll8, = (/D IF'(2)17(1 = IZ\Q)q’QdA(Z)) :

These results improve previous results of Clunie and MacGregor.

1. Introduction

Let H(D) denote the space of holomorphic functions on the unit disk D =
{zeC:|z|<1}. If0<r<1land 0<p< oo, for f € H(D), we set

27 1/p
Mnf) = (5 [ lrrepar)

The Hardy space HP consists of those functions f € H(D) for which

[fllze = sup Mp(r, f) < .
0<r<1

The Bloch space B consists of those f € H(D) for which
2 /
pi(f) = sup(l — [2[7)[f'(2)] < oo.
z€eD
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The Bloch space is a Banach space with the norm || - ||z defined by

1flls = [f(O) + ps(f), [fe€B.

Notation: Throughout this paper, we write U SV (or'V 2 U) for U < cV for
a positive constant ¢, and moreover U =V for both U SV and V < U.

The well-known Hardy convexity theorem [5] says that M,(r, f) is an in-
creasing function of r and log M, (r, f) is a convex function of logr. In [9],
Mashreghi showed that %Mp(r, f) = o(logr). Analogous to the Hardy con-
vexity theorem, area integral means of analytic functions were studied in [3],
[13] and [15].

Clunie and MacGregor [2] and Makarov [8] proved that if f € B, then for
0<p<oo,

(1.1) My(r, f) =0 ((log 1 i T>1/2> as r— 1.

Let 0 < r < 1. If we write f.(z) = f(rz), then My(r, f) = || frllmr. It is
shown in [4] that the order 1 in the right of (1.1) is sharp in the sense that
there is a function f € B such that

1 \2
My(r, f) = <log1_r) as r— 1.

The fact that the right hand side of (1.1) is unbounded implies that the Bloch
space is not contained in the Hardy space.
In [11, Theorem 8.9], it is proved that if f € B with f(0) = 0, then

(1.2) M3y (r, f) < nlps(f) (10g 1 _1r2>

for 0 <r <landn =0,1,2,.... In this paper, we intend to improve (1.1)
and generalize (1.2) to the following form.

Theorem 1. Let 0 <r <1 and f € B with f(0) =0. For 0 < p < oo, let k be
the integer such that 0 < p — 2k < 2. Then

. r¢+1 1 \"?
(1.3) Mp(ﬁf)<r(127_2|_1_k)/’6<10g1_7,2> :

Notice that

L 2+—T4+O( %) -0
=r r as r .

1—1r2 2

We have the following corollary.

log

Corollary 2. In the conditions of Theorem 1, we have

D 1/p
(1.4) My(r, f) < (F(Fp(j—_;i)k)> pe(f)r as r—0.
2
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It is well known that B is the maximal Mobius invariant function space.
There are several other Mobius invariant function spaces contained in B. One

is the 9, space defined by
2\ P
) dA(z) < oo} ,

where 0 < p < oo and dA(w) = 7~ 'dx dy is the normalized Lebesgue measure
on D. It is known that Qg is the Dirichlet space D, Q1 is the so-called BMOA,
and when p > 1, @, = B. The growth of | f;||g, is characterized in [1], see also
[14, Theorem 7.1.4]. It is proved that

(1.5) 1frllo, < (/Or (1og g)p (1dt;)2)1/2 ps(f),

where 0 < 7 < 1 and p > 0. When p = 1, this inequality is given by Korenblum
in [7]. Here we intend to characterize the case p = 0, that is, the growth of
fr in the seminorm of the Dirichlet space. More generally, for 1 < ¢ < oo, the
Besov space B, is defined as

By ={ £ eum): 111, = [ 170 (1- 1) a4 <o}

Trivially, Bo = Qy = D. Moreover, Bj is the minimal Md&bius invariant space
given by

a—z
1—az

Q= {f €HD) : £, = sup/ (=) (1 -
ac JD

B, - {fe”H(D) rla, = [ 15" aac) <oo}.

The Besov space is another Mobius invariant space on D.
We have the following theorem.

Theorem 3. Let 0 <r <1 and f € B with f(0) =0. We have
(1) For 1 < ¢ < o0,

1/q
(16) I, < ros(h (== ) -
(2) If f/(0) = 0, then
r2p
(17) 1fllss < (1”_5“;

where p(f) = sup,cp(l — |2|%)2|f"(2)].

In particular, let ¢ = 2 in Theorem 3, then

1/2
Il < ros(h) (2735 )

This is just the case p =0 in (1.5).



962 W. YANG AND J. ZHUGELIU

2. Preliminaries

For0<r<1,0<p<ooand f € H(D), the following equality is contained
in [12].

1 [P . 2 _ r

1) o [ 18P = 1FOF + B [ 1) 2l ) o - dAw)
m™Jo D |wl

Let w = rz in the right-hand side in (2.1), then we have
1 o it\|p P p27“2 p—2 ¢/ 2 1

22) 5 [ U ra=lr @+ [ 1522l e Plog - dAG).
T Jo D ||

The following identity belongs to Hardy. We quoted it from [11, p. 174].
d d 27 . 27 . ) o
ey o (g [ eetpa) = [P e par

for f € H(D).
The following lemma is quoted from [16, Theorem 5.4].

Lemma 4. If g € H(D), then g € B if and only if the function (1—|z|?)?|g" (2)|
is bounded. Moreover, if g(0) = ¢'(0) = 0, then

pB(g) = Sug(l = [21)%19" (2)] = p5(9)-
zZ€
The following lemma is useful in our verification.

Lemma 5. If0<r<1,1<p< oo, then
1

1
s 1 1

) [ —>  _log-ds= — log ——.

()/0 (1 —1r2s2)2 B BT 28T 2

®) /01 1= :232)2 ds=35q . )
() d < d) <10g 1 >p _ 4pr(<10g ljrz)”_#ﬂ(p—n(log 171,,'2)17_2).
1—1r2

(1—r2)2

Proof. Straightforward computation gives this lemma. (I

3. Proof of Theorems

In order of give the proof of Theorem 1, we prove the following theorem,
which is weaker that Theorem 1.

Theorem 6. Let 0 <r < 1 and f € B with f(0) =0. For 0 < p < co, we have

(3.1) My(r, £) < max {1, 5} (1) (log 1_172)1/2.
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Proof. When p = 2, (2.2) gives that

(Ma(r, £))? = 202 / F/(r2)|? log - dA(2)
D |Z|

2
ps(f) 1
< 272 BN —
< 2r /(1—r2| |2> log| |dA(z)
27
=2r?p / / 1—r252 log dsdt

2
:pB(f)lOgl_rg'

The last equality follows from Lemma 5(1).
Similarly, when p > 2, we can use Holder’s inequality to get that

'(rz)[* log ﬂ dA(2)

pr 1fr z)|P (1f6(2f|)|2> logﬁdA(z)

202 52 2
prp / / (rse)|P~ th( 272 log ds

<P ([ ) T e ulgd)

1/ g2 , E slog L ds
2.2 2 i Y|P 55
=pTrpB (f)/o (271_/0 |f(rset)\ dt) (1 —r2s2)2
1 -~ logid
=) [ s ) S

(My(r, £))P

Since M, (r, f) is a positive increasing function of r, we have
My(rs, f) < Mp(r, f), 0<s<L
This implies that

(MP( f)) <p PR 1 —7’252)2 - 4 IOg

When 0 < p < 2, it follows from the Holder’s inequality that

Uoslogtds  p?pi(f)
222(f>/0 ( —

Myl £ = 5 [ 1Pt

T p/2
<3 (/ 2 et - (2m)°F

(My(r, £))P
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1 p/2
< b 1 .
< ps(f) (og . r2)

This completes the proof. O

Now we are ready to prove Theorem 1. It is inspired by the proof of [11
Theorem 8.9].

Proof of Theorem 1. When 0 < p < 2, it is contained in Theorem 6. Thus
(1.3) holds when 2k — 2 < p < 2k with & = 1. We suppose that it also holds
for some k € N. That is,

(R (5 +1) 1 \"?
—_ HPdt < ——2———ph (log ——

o J, el —P(§+1—k)pﬁ<og1—r2>
for 2k — 2 < p < 2k.

When 2k < p < 2k + 2, (2.3) gives that

1 d d [ ity (p rp? o it (p—2) £, it\|2
e (e [ reepar) = [ a2l e P

2 2 2w
D" PB it p72dt
e / Fre)]

2_q
rp PBF( ) 1 2
< log ——
S U= —k) (B1=2 ’

where the last inequality follows from (3.2). Lemma 5(4) gives that

q—1
r (log =57 _ld/d 1\?
-2  “agdr \"ar —2

for ¢ > 1. Let ¢ = &, then we have

(3.2)

PP .
pPBF(i) d d 1 z
< —2 =20 | r— 1
28 —k)dr " BT 2
)
Thus we arrive at

P41) d [/ d 1 \?
—|r— ) log——= ] .
FE+1—(k+1))dr \ dr 1—1r2
d

dr< (erp(r f)) T + ”I;(? &21))5 (T(f7“> <1°g 1—17~2)g

Integrating twice gives the desired result since both sides vanish for r — 0. O
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Remark 7. Note that Theorems 1 and 6 coincide when 0 < p < 4. However,
Stirling’s formula gives that

T2 +1) \"7
(F(é’ +1- k))
(2"
2e

Then from Theorem 1 we deduce

=1 as p— oo.

1/2

p\1/2 1
Mp(r, f) < (%) PB (108; 11"2> as p — o0.

This upper bound is better than the upper bound in Theorem 6 for large p.

Now we give a proof of Theorem 3.
Proof of Theorem 8. Similar to the proof of Theorem 6, for ¢ > 1, we have

1frll%, = /qulf’(rz)lqu — [2*)772d A(z)

< 114(f) / mdA<z>

27
= / / dsdt
1 —r2

= Tqﬂzs(f)m

where the last equality follows from Lemma 5(2). Moreover, Lemma 4 implies
that

T / 2| £ (r2)|dA(2)

r PB(f)/ﬁdA(z)

2
/ / T T282 dsdt

(1 —T2)

IN

=rpa(f)

where the last equality follows from Lemma 5(3). This completes the proof. [

More generally, let « > 0 and p > 0, the Dirichlet-type space D? is defined
as

D = {fe’H(D) iy = [ 17 2R)dA() < oo}.
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For v > 0, the Bloch type space B, is given by

- {f € HD) : Iflls, = sup | £ (L= 22)" < oo}.
zeD

Similar to ([6, Theorem 1.7] and [10, Proposition 2.7]), we obtained a related
estimation formula. If f € B, with f(0) = 0, then similar to the proof of
Theorem 3, we have

1Dy = / PPIF ()P (1L — [22)*dA(z)
_ Z2 a
<, [ ((1|2)dA(z)

[r2])P

27
1—3
_Tpr”p / / 1—r2 2 o dsdt

1—s%)%s

_ 0|l £ (

=2rP| f]| V/O (1= 1252y ds
It can be checked that

JR L TG L
o (1 —r2s2)py 2(a+1) ’

where 2 F ([1,p7]; [2 + af;r?) is the hypergeometric function given by

00 )k
Fi(1 [2 _—
2 1([ 7p’Y] +OL Z Ll 2+Oé )
and («) is the Pochhammer symbol deﬁned by
(a+k)
(Oé) - F(a)
Notice that
(1), = K,

we have

. g =tk = T(py+ k) -T2+ )
PR +alir) =3 (QM):—;Z() Ty T@1ath

For fixed p, o and =, it follows from Stirling’s formula that
T(py+k) -T2+ a)
T(py) T2+ a+k)
This implies that

~ kP2 as k — 0.

S —rHoti=PY ifpy —a—1>0;

2F1([Lp]i 2+ alsr?) § < log

=2 ifpy—a—-1=0;

is bounded ifpy—a—-1<0,
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as 7 — 1. Thus we have the following corollary.

Corollary 8. Letp >0, « > 0 and y > 0. For f € B, with f(0) = 0, we have:

(1]

2]

[4]
[5]
[6]

[7]

(8]

[9

(10]

(11]

(12]

(13]

(1) If py —a =1 <0, then By, C Dy with || flpz < |5, -
(2) If py —a—1=0, then
1 1/p
IF:loe S 717, (1o =)
(3) If py —a—1>0, then

py—a—1
3

1
p < PEET)
”frHDa ~ THf”B'y (1 _ 7,2)
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