DOI QR코드

DOI QR Code

ON DUALITY OF WEIGHTED BLOCH SPACES IN ℂn

  • Yang, Gye Tak (Department of Information Security Konyang University) ;
  • Choi, Ki Seong (Department of Information Security Konyang University)
  • Received : 2010.05.20
  • Accepted : 2010.08.12
  • Published : 2010.09.30

Abstract

In this paper, we consider the weighted Bloch spaces ${\mathcal{B}}_q$(q > 0) on the open unit ball in ${\mathbb{C}}^n$. We prove a certain integral representation theorem that is used to determine the degree of growth of the functions in the space ${\mathcal{B}}_q$ for q > 0. This means that for each q > 0, the Banach dual of $L_a^1$ is ${\mathcal{B}}_q$ and the Banach dual of ${\mathcal{B}}_{q,0}$ is $L_a^1$ for each $q{\geq}1$.

Keywords

References

  1. J. Anderson, Bloch functions: The Basic theory, operators and function theory, S. Power. editor, D. Reidel, 1985.
  2. J. Anderson, J, Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
  3. J. Arazy, S. D. Fisher, J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054. https://doi.org/10.2307/2374685
  4. S. Axler, The Bergman spaces, the Bloch space and commutators of multiplica- tion operators, Duke Math. J. 53 (1986), 315-332. https://doi.org/10.1215/S0012-7094-86-05320-2
  5. K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces $B_q$, J. Korean Math. Soc. 39 (2002), no.2, 277-287. https://doi.org/10.4134/JKMS.2002.39.2.277
  6. K. S. Choi, little Hankel operators on Weighted Bloch spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479. https://doi.org/10.4134/CKMS.2003.18.3.469
  7. K. S. Choi, Notes On the Bergman Projection type operators in ${\mathbf{C}}^n$, Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74. https://doi.org/10.4134/CKMS.2006.21.1.065
  8. K. S. Choi, Notes on Carleson Measures on bounded symmetric domain, Commun. Korean Math. Soc. 22(2007), no.1, 65-74. https://doi.org/10.4134/CKMS.2007.22.1.065
  9. K. T. Hahn and K. S. Choi, Weighted Bloch spaces in ${\mathbf{C}}^n$, J. Korean Math. Soc. 35(1998), no.2, 171-189.
  10. K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458. https://doi.org/10.4153/CJM-1975-053-0
  11. K. T. Hahn, E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in ${\mathbf{C}}^n$, Manuscripta Math 71 (1991), 67-81 https://doi.org/10.1007/BF02568394
  12. K. T. Hahn, E. H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions in the unit ball, J. Math. Analysis and Appl. 175 (1993), 206-221. https://doi.org/10.1006/jmaa.1993.1163
  13. S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth & Brooks/Cole Math. Series, Pacific Grove, CA, 1992.
  14. W. Rudin, Function theory in the unit ball of ${\mathbf{C}}^n$, Springer Verlag, New York, 1980.
  15. M. Stoll, Invariant potential theory in the unit ball of ${\mathbf{C}}^n$, London mathematical Society Lecture note series 199, 1994.
  16. R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267. https://doi.org/10.1112/blms/12.4.241
  17. K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Analysis 81 (1988), 262-278.
  18. K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177 https://doi.org/10.1216/rmjm/1181072549