References
- J. Anderson, Bloch functions: The Basic theory, operators and function theory, S. Power. editor, D. Reidel, 1985.
- J. Anderson, J, Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
- J. Arazy, S. D. Fisher, J. Peetre, Hankel operators on weighted Bergman spaces, Amer. J. Math. 110 (1988), 989-1054. https://doi.org/10.2307/2374685
- S. Axler, The Bergman spaces, the Bloch space and commutators of multiplica- tion operators, Duke Math. J. 53 (1986), 315-332. https://doi.org/10.1215/S0012-7094-86-05320-2
-
K. S. Choi, Lipschitz type inequality in Weighted Bloch spaces
$B_q$ , J. Korean Math. Soc. 39 (2002), no.2, 277-287. https://doi.org/10.4134/JKMS.2002.39.2.277 - K. S. Choi, little Hankel operators on Weighted Bloch spaces, Commun. Korean Math. Soc. 18 (2003), no. 3, 469-479. https://doi.org/10.4134/CKMS.2003.18.3.469
-
K. S. Choi, Notes On the Bergman Projection type operators in
${\mathbf{C}}^n$ , Commun. Korean Math. Soc. 21 (2006), no. 1, 65-74. https://doi.org/10.4134/CKMS.2006.21.1.065 - K. S. Choi, Notes on Carleson Measures on bounded symmetric domain, Commun. Korean Math. Soc. 22(2007), no.1, 65-74. https://doi.org/10.4134/CKMS.2007.22.1.065
-
K. T. Hahn and K. S. Choi, Weighted Bloch spaces in
${\mathbf{C}}^n$ , J. Korean Math. Soc. 35(1998), no.2, 171-189. - K. T. Hahn, Holomorphic mappings of the hyperbolic space into the complex Euclidean space and Bloch theorem, Canadian J. Math. 27 (1975), 446-458. https://doi.org/10.4153/CJM-1975-053-0
-
K. T. Hahn, E. H. Youssfi, M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the unit ball in
${\mathbf{C}}^n$ , Manuscripta Math 71 (1991), 67-81 https://doi.org/10.1007/BF02568394 - K. T. Hahn, E. H. Youssfi, Tangential boundary behavior of M-harmonic Besov functions in the unit ball, J. Math. Analysis and Appl. 175 (1993), 206-221. https://doi.org/10.1006/jmaa.1993.1163
- S. Krantz, Function theory of several complex variables, 2nd ed., Wadsworth & Brooks/Cole Math. Series, Pacific Grove, CA, 1992.
-
W. Rudin, Function theory in the unit ball of
${\mathbf{C}}^n$ , Springer Verlag, New York, 1980. -
M. Stoll, Invariant potential theory in the unit ball of
${\mathbf{C}}^n$ , London mathematical Society Lecture note series 199, 1994. - R. M. Timoney, Bloch functions of several variables, J. Bull. London Math. Soc. 12 (1980), 241-267. https://doi.org/10.1112/blms/12.4.241
- K. H. Zhu, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Analysis 81 (1988), 262-278.
- K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), 1143-1177 https://doi.org/10.1216/rmjm/1181072549