• 제목/요약/키워드: Birkhoff theorem

검색결과 9건 처리시간 0.021초

수학사적 관점에서 본 피타고라스 정리의 증명 (Proof of the Pythagorean Theorem from the Viewpoint of the Mathematical History)

  • 최영기;이지현
    • 대한수학교육학회지:학교수학
    • /
    • 제9권4호
    • /
    • pp.523-533
    • /
    • 2007
  • 이 논문에서는 피타고라스 정리에 대한 피타고라스와 유클리드의 증명의 의미를 역사적, 수학적 관점에서 고찰하였다. 피타고라스의 닮음비에 의한 증명 방법은 통약성이라는 수에 대한 가정에 근거한 것이라고 볼 수 있다. 반면 유클리드는 통약성이 필요 없는 분해 합동이라는 순수한 기하학적 방법으로 다시 증명하였다. 피타고라스 정리의 증명에서 엿볼 수 있는 피타고라스와 유클리드의 기하에 대한 다른 접근 방식을 현 학교 기하의 바탕이 되는 Birkhoff와 Hither 공리계와 연관하여 논의하였다. Birkhoff는 엄밀하게 정의된 실수 개념을 상식으로 수용하여 현대수학적인 평면 기하 공리계를 제안하였으며, Hilbert는 실수 개념에 의존하지 않는 순수한 기하학을 추구했던 유클리드적 정신을 계승하였다. 따라서 피타고라스 정리에 대한 닮음비와 분해합동을 이용한 증명, 또 넓이에 의한 증명과 넓이가 같음에 의한 증명의 차이는 전통적인 유클리드의 종합기하적 전개와 현대수학적 전개사이의 갈등이라는 기하 교육에서 아직도 완전히 해결되지 않은 논점과 관련이 있다.

  • PDF

CONVEX POLYTOPES OF GENERALIZED DOUBLY STOCHASTIC MATRICES

  • Cho, Soo-Jin;Nam, Yun-Sun
    • 대한수학회논문집
    • /
    • 제16권4호
    • /
    • pp.679-690
    • /
    • 2001
  • Doubly stochastic matrices are n$\times$n nonnegative ma-trices whose row and column sums are all 1. Convex polytope $\Omega$$_{n}$ of doubly stochastic matrices and more generally (R,S), so called transportation polytopes, are important since they form the domains for the transportation problems. A theorem by Birkhoff classifies the extremal matrices of , $\Omega$$_{n}$ and extremal matrices of transporta-tion polytopes (R,S) were all classified combinatorially. In this article, we consider signed version of $\Omega$$_{n}$ and (R.S), obtain signed Birkhoff theorem; we define a new class of convex polytopes (R,S), calculate their dimensions, and classify their extremal matrices, Moreover, we suggest an algorithm to express a matrix in (R,S) as a convex combination of txtremal matrices. We also give an example that a polytope of signed matrices is used as a domain for a decision problem. In this context of finite reflection(Coxeter) group theory, our generalization may also be considered as a generalization from type $A_{*}$ n/ to type B$_{n}$ D$_{n}$. n/.

  • PDF

ON $\varepsilon$-BIRKHOFF ORTHOGONALITY AND $\varepsilon$-NEAR BEST APPROXIMATION

  • Sharma, Meenu;Narang, T.D.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제8권2호
    • /
    • pp.153-162
    • /
    • 2001
  • In this Paper, the notion of $\varepsilon$-Birkhoff orthogonality introduced by Dragomir [An. Univ. Timisoara Ser. Stiint. Mat. 29(1991), no. 1, 51-58] in normed linear spaces has been extended to metric linear spaces and a decomposition theorem has been proved. Some results of Kainen, Kurkova and Vogt [J. Approx. Theory 105 (2000), no. 2, 252-262] proved on e-near best approximation in normed linear spaces have also been extended to metric linear spaces. It is shown that if (X, d) is a convex metric linear space which is pseudo strictly convex and M a boundedly compact closed subset of X such that for each $\varepsilon$>0 there exists a continuous $\varepsilon$-near best approximation $\phi$ : X → M of X by M then M is a chebyshev set .

  • PDF

HYPERCYCLICITY FOR TRANSLATIONS THROUGH RUNGE'S THEOREM

  • Hallack Andre Arbex
    • 대한수학회보
    • /
    • 제44권1호
    • /
    • pp.117-123
    • /
    • 2007
  • In this paper, we first adapt Runge's Theorem to work on certain domains in any complex Banach space. Then, using this result, we extend Birkhoff's Theorem on the hypercyclicity of translations on $H(\mathbb{C})$ and Costakis' and Sambarino's result on the existence of common hypercyclic functions for uncountable families of translations on $H(\mathbb{C})$ to subs paces of $H_b(E)$ (in some cases all of $H_{b}$(E)), E being in a large class of Banach spaces.

ORTHOGONALITY IN FINSLER C*-MODULES

  • Amyari, Maryam;Hassanniah, Reyhaneh
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.561-569
    • /
    • 2018
  • In this paper, we introduce some notions of orthogonality in the setting of Finsler $C^*$-modules and investigate their relations with the Birkhoff-James orthogonality. Suppose that ($E,{\rho}$) and ($F,{\rho}^{\prime}$) are Finsler modules over $C^*$-algebras $\mathcal{A}$ and $\mathcal{B}$, respectively, and ${\varphi}:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is a *-homomorphism. A map ${\Psi}:E{\rightarrow}F$ is said to be a ${\varphi}$-morphism of Finsler modules if ${\rho}^{\prime}({\Psi}(x))={\varphi}({\rho}(x))$ and ${\Psi}(ax)={\varphi}(a){\Psi}(x)$ for all $a{\in}{\mathcal{A}}$ and all $x{\in}E$. We show that each ${\varphi}$-morphism of Finsler $C^*$-modules preserves the Birkhoff-James orthogonality and conversely, each surjective linear map between Finsler $C^*$-modules preserving the Birkhoff-James orthogonality is a ${\varphi}$-morphism under certain conditions. In fact, we state a version of Wigner's theorem in the framework of Finsler $C^*$-modules.

Mutifractal Analysis of Perturbed Cantor Sets

  • Baek, Hun Ki;Lee, Hung Hwan
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.503-510
    • /
    • 2005
  • Let $\left{K_{\alpha}\right}_{{\alpha}{\in}{\mathbb{R}}}$ be the multifractal spectrums of a perturbed Cantor set K. We find the set of values ${\alpha}$ of nonempty set $K_{\alpha}$ by using the Birkhoff ergodic theorem. And we also show that such $K_{\alpha}$ is a fractal set in the sense of Taylor [12].

  • PDF

ON UNIVERSAL FUNCTIONS

  • Aron, Richard;Markose, Dinesh
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.65-76
    • /
    • 2004
  • An entire function $f\;{\in}\;H(\mathbb{C})$ is called universal with respect to translations if for any $g\;{\in}\;H(\mathbb{C}),\;R\;>\;0,\;and\;{\epsilon}\;>\;0$, there is $n\;{\in}\;{\mathbb{N}}$ such that $$\mid$f(z\;+\;n)\;-\;g(z)$\mid$\;<\;{\epsilon}$ whenever $$\mid$z$\mid$\;{\leq}\;R$. Similarly, it is universal with respect to differentiation if for any g, R, and $\epsilon$, there is n such that $$\mid$f^{(n)}(z)\;-\;g(z)$\mid$\;<\;{\epsilon}\;for\;$\mid$z$\mid$\;{\leq}\;R$. In this note, we review G. MacLane's proof of the existence of universal functions with respect to differentiation, and we give a simplified proof of G. D. Birkhoff's theorem showing the existence of universal functions with respect to translation. We also discuss Godefroy and Shapiro's extension of these results to convolution operators as well as some new, related results and problems.

SYMBOLIC DYNAMICS AND UNIFORM DISTRIBUTION MODULO 2

  • Choe, Geon H.
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.881-889
    • /
    • 1994
  • Let ($X, \Beta, \mu$) be a measure space with the $\sigma$-algebra $\Beta$ and the probability measure $\mu$. Throughouth this article set equalities and inclusions are understood as being so modulo measure zero sets. A transformation T defined on a probability space X is said to be measure preserving if $\mu(T^{-1}E) = \mu(E)$ for $E \in B$. It is said to be ergodic if $\mu(E) = 0$ or i whenever $T^{-1}E = E$ for $E \in B$. Consider the sequence ${x, Tx, T^2x,...}$ for $x \in X$. One may ask the following questions: What is the relative frequency of the points $T^nx$ which visit the set E\ulcorner Birkhoff Ergodic Theorem states that for an ergodic transformation T the time average $lim_{n \to \infty}(1/N)\sum^{N-1}_{n=0}{f(T^nx)}$ equals for almost every x the space average $(1/\mu(X)) \int_X f(x)d\mu(x)$. In the special case when f is the characteristic function $\chi E$ of a set E and T is ergodic we have the following formula for the frequency of visits of T-iterates to E : $$ lim_{N \to \infty} \frac{$\mid${n : T^n x \in E, 0 \leq n $\mid$}{N} = \mu(E) $$ for almost all $x \in X$ where $$\mid$\cdot$\mid$$ denotes cardinality of a set. For the details, see [8], [10].

  • PDF