Mutifractal Analysis of Perturbed Cantor Sets

Hun Ki Baek and Hung Hwan Lee
Department of Mathematics, Kyungpook National University, Daegu 702-701, Korea
e-mail: fractusus@hanmail.net and hhlee@knu.ac.kr

Abstract. Let $\left\{K_{\alpha}\right\}_{\alpha \in \mathbb{R}}$ be the multifractal spectrums of a perturbed Cantor set K. We find the set of values α of nonempty set K_{α} by using the Birkhoff ergodic theorem. And we also show that such K_{α} is a fractal set in the sense of Taylor [12].

1. Introduction

Multifractal analysis [2], [3], [8], [10], [11] aims to quantify the singularity structure of measures defined on a fractal set K in \mathbb{R}^{N} and provide a model for phenomena in which scaling occurs with a range of different power laws. Specially, if K has a fractal dimension s and supports a natural finite measure μ, we expect that

$$
0<\limsup _{r \rightarrow 0} \frac{\mu(B(x, r))}{(2 r)^{s}}<\infty
$$

or more generally,

$$
\lim _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log (2 r)}=s \text { for all } x \in K
$$

However, multifractal theory is much interesting when this does not happen. In other word, this is concerned about subsets

$$
K_{\alpha}=\left\{x \in K: \lim _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}=\alpha\right\}
$$

of K for the parameter α. The main problem in multifractal theory is to estimate the size of K_{α} by using the $f(\alpha)$-spectrum defined by their Hausdorff (or packing) dimension. In general, one does not use the box dimensions of K_{α} because, for many cases, K_{α} 's are dense in K, so their box dimensions are equal to the box dimension of K itself.

There are many problems in mathematics which may readily be solved in linear cases but which have non-linear counterparts that are much harder to analysis. In

[^0]2000 Mathematics Subject Classification: 28A80, 37C45.
Key words and phrases: Hausdorff dimension, packing dimension, multifractal decompositions, multifractal analysis, perturbed Cantor sets, Bernoulli measures.
this research we describes a procedure which allows many results and ideas from the linear or piecewise linear situation to be extended to non-linear cases.

Now, we analyze multifractal structure for non-linear Cantor sets in \mathbb{R}^{N}, so called, perturbed Cantor set with a Bernoulli measure. For this, we first define a perturbed Cantor set [1], [9].

Fix $m \geq 2$, let $\Sigma=\{1,2, \cdots, m\}, \Sigma^{k}=\{1,2, \cdots, m\}^{k}$ and $\Sigma^{*}=\underset{k \geq 1}{\cup} \Sigma^{k}$. Suppose that $\left\{S_{i_{1} i_{2} \cdots i_{k}}:\left(i_{1}, i_{2}, \cdots, i_{k}\right) \in \Sigma^{*}\right\}$ is a sequence of mappings on a compact subset X of \mathbb{R}^{N} with $|X|=1$ such that

$$
S_{i_{1} i_{2} \cdots i_{k}}: X \rightarrow X, i_{j} \in\{1,2, \cdots, m\}
$$

$\left|S_{i_{1} i_{2} \cdots i_{k}}(x)-S_{i_{1} i_{2} \cdots i_{k}}(y)\right|=r_{i_{k}}|x-y|$ for $x, y \in X, 0<r_{i_{k}}<1$, and there exists $0<C<1$ such that

$$
\begin{equation*}
C\left|X_{i_{1}, \cdots, i_{k}}\right| \leq \min _{1 \leq i \neq j \leq m} \operatorname{dist}\left(X_{i_{1} i_{2} \cdots i_{k} i}, X_{i_{1} i_{2} \cdots i_{k} j}\right) \text { for all } k \in \mathbb{N} . \tag{1.1}
\end{equation*}
$$

Put $X_{i_{1} i_{2} \cdots i_{k}}=S_{i_{1}} \circ S_{i_{1} i_{2}} \circ \cdots \circ S_{i_{1} i_{2} \cdots i_{k}}(X)$ and

$$
K:=\bigcap_{k=1}^{\infty} \bigcup_{\left(i_{1}, i_{2}, \cdots i_{k}\right) \in \Sigma^{k}} X_{i_{1} i_{2} \cdots i_{k}} .
$$

This K is called a perturbed Cantor set generated by $\left\{S_{i_{1} i_{2} \cdots i_{k}}\right\}$.
Clearly the condition (1.1) implies K satisfies the open set condition.
Noting $\cap_{k=1}^{\infty} X_{i_{1} i_{2} \cdots i_{k}}$ is a singleton, we can define a bijective map

$$
\pi: \Sigma \rightarrow K \quad \text { by } \pi(\mathbf{i})=\bigcap_{k=1}^{\infty} X_{i_{1} i_{2} \cdots i_{k}}
$$

where $\mathbf{i}=\left(i_{1}, i_{2}, \cdots\right) \in \Sigma$.
Fix a probability vector $\left(p_{1}, p_{2}, \cdots, p_{m}\right)$ with $\sum_{i=1}^{m} p_{i}=1$ and $0<p_{i}<1$. Let ν be the corresponding infinite product measure on Σ. Define $\mu=\nu \circ \pi^{-1}$ which is the Borel probability measure on K such that

$$
\begin{equation*}
\mu\left(X_{i_{1} i_{2} \cdots i_{k}}\right)=\prod_{j=1}^{k} p_{i_{j}} \text { for }\left(i_{1}, i_{2}, \cdots, i_{k}\right) \in \Sigma^{k} . \tag{1.2}
\end{equation*}
$$

This μ is called the $\left(p_{1}, p_{2}, \cdots, p_{m}\right)$-Bernoulli measure on K.
For each $\alpha \in \mathbb{R}$, let

$$
K_{\alpha}:=\left\{x \in \mathbb{R}^{N}: \lim _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}=\alpha\right\}
$$

where $B(x, r)=\left\{y \in \mathbb{R}^{N}:|x-y|<r\right\}$. We say $\left\{K_{\alpha}\right\}_{\alpha \in \mathbb{R}}$ is the multifractal decomposition of K, and $\left\{f_{H}(\alpha)\right\}_{\alpha \in \mathbb{R}},\left\{f_{p}(\alpha)\right\}_{\alpha \in \mathbb{R}}$ the multifractal spectrums
(or the singularity spectrums) of μ, where $f_{H}(\alpha)\left(f_{p}(\alpha)\right)$ is the Hausdorff(packing) dimension of K_{α} (see [4], [5] for more information).

We will prove that such K_{α} is a fractal in the sense of Taylor [12] and the multifractal spectrums of μ are the Legendre transformation of a famous auxiliary function β satisfied with $\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta}=1$.

Now let us recall some of basic facts for the auxiliary function $\beta(q)$ from [2], [3], [10].

Given a real number q, we define $\beta=\beta(q)$ as the positive number satisfying

$$
\begin{equation*}
\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta}=1 \tag{1.3}
\end{equation*}
$$

Then $\beta: \mathbb{R} \rightarrow \mathbb{R}$ is a decreasing real analytic function with $\lim _{q \rightarrow-\infty} \beta(q)=\infty$ and $\lim _{q \rightarrow \infty} \beta(q)=-\infty$. Clearly $\beta(1)=0$. And let f be the Legendre transformation of β. Then $f:\left[\alpha_{\min }, \alpha_{\max }\right] \rightarrow \mathbb{R}$ is given by $f(\alpha)=\beta(q)+\alpha q$, where

$$
\alpha_{\min }=\min _{1 \leq i \leq m} \frac{\log p_{i}}{\log r_{i}}, \quad \alpha_{\max }=\max _{1 \leq i \leq m} \frac{\log p_{i}}{\log r_{i}}
$$

are the negative slope of the asymptotes of the function β. And $f\left(\alpha_{\min }\right)=\alpha_{*}$, $f\left(\alpha_{\max }\right)=\alpha^{*}$ with

$$
\begin{equation*}
\sum_{i \in\left\{i: \frac{\log p_{i}}{\log r_{i}}=\alpha_{\min }\right\}} r_{i}^{\alpha_{*}}=1 \quad \text { and } \sum_{i \in\left\{i: \frac{\log p_{i}}{\log r_{i}}=\alpha_{\max }\right\}} r_{i}^{\alpha^{*}}=1 \tag{1.4}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\lim _{q \rightarrow \infty} \alpha(q)=\alpha_{\min } \quad \text { and } \lim _{q \rightarrow-\infty} \alpha(q)=\alpha_{\max } \tag{1.5}
\end{equation*}
$$

2. Main results

Let's list or prove some basic but useful facts before our main theorem.
Lemma 2.1 [5, Proposition 2.3]. Let E be a Borel set and μ be a finite measure on \mathbb{R}^{N} as in (1.3).
(1) If $\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq s$ for all $x \in E$ and $\mu(E)>0$, then $\operatorname{dim}_{H} E \geq s$.
(2) If $\liminf \lim _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \leq s$ for all $x \in E$, then $\operatorname{dim}_{H} E \leq s$.
(3) If $\lim \sup _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq s$ for all $x \in E$ and $\mu(E)>0$, then $\operatorname{dim}_{p} E \geq s$.
(4) If $\lim \sup _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \leq s$ for all $x \in E$, then $\operatorname{dim}_{p} E \leq s$.

We can easily get the following Lemma from the definition of a perturbed Cantor set.

Lemma 2.2. Let $d=\min _{1 \leq i \neq j \leq m} \operatorname{dist}\left(X_{i}, X_{j}\right)$ and C as in (1.1). If $x \in X_{i_{1} i_{2} \cdots i_{k}} \cap K$ and $\left|X_{i_{1} i_{2} \cdots i_{k}}\right| \leq r<\left|X_{i_{1} i_{2} \cdots i_{k}}\right| d^{-1}$, then

$$
B(x, C d r) \cap K \subset X_{i_{1} i_{2} \cdots i_{k}} \cap K \subset B(x, r)
$$

For $x \in K$, we denote $X_{k}(x)$ for the k-th level set $X_{i_{1} i_{2} \cdots i_{k}}$ that contains x.
It is not hard to show the next Proposition with Lemma 2.2.
Proposition 2.3.

$$
\lim _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r}=\alpha \quad \text { iff } \quad \lim _{k \rightarrow 0} \frac{\log \mu\left(X_{k}(x)\right)}{\log \left|X_{k}(x)\right|}=\alpha
$$

We now introduce a mass distribution measure λ supported on $K_{\alpha(q)}$ for fixed q. For given $q \in \mathbb{R}$ and $\beta=\beta(q)$, we define a probability measure λ on X by

$$
\begin{equation*}
\lambda\left(X_{i_{1} i_{2} \cdots i_{k}}\right)=\mu\left(X_{i_{1} i_{2} \cdots i_{k}}\right)^{q}\left|X_{i_{1} i_{2} \cdots i_{k}}\right|^{\beta(q)} \tag{2.1}
\end{equation*}
$$

and extend this to a Borel measure on \mathbb{R}^{N} in the usual way.
Theorem 2.4. Let $\alpha \in\left(\alpha_{\min }, \alpha_{\max }\right)$. Then
(1) $\lambda\left(K_{\alpha}\right)=1$.
(2) $\lim _{r \rightarrow 0} \frac{\log \lambda(B(x, r))}{\log r}=f(\alpha)$ for all $x \in K_{\alpha}$.

Proof. (1) Define $\phi(x)=\log \mu\left(X_{i_{1}}\right)$ and $\psi(x)=\log \left|X_{i_{1}}\right|=\log r_{i_{1}}$ for $x=$ $\pi\left(i_{1}, i_{2}, \cdots\right)$. Then

$$
\begin{gathered}
\int|\phi| d \lambda=\sum_{i=1}^{m} \lambda\left(X_{i}\right)\left|\log \mu\left(X_{i}\right)\right|=\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta}\left|\log p_{i}\right|<\infty \text { and } \\
\int|\psi| d \lambda=\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta}\left|\log r_{i}\right|<\infty
\end{gathered}
$$

Define the shift transformation $T: K \rightarrow K$ by $T(x)=\pi\left(i_{2}, i_{3}, \cdots\right)$, where $x=$ $\pi\left(i_{1}, i_{2}, \cdots\right)$. Since the shift map $\sigma: \Sigma \rightarrow \Sigma$ defined by $\sigma\left(i_{1}, i_{2}, \cdots\right)=\left(i_{2}, i_{3}, \cdots\right)$ is ergodic with respect to ν, so is T respect to μ. Hence we can easily show that
T is ergodic with respect to λ by replacing a probability vector $\left(p_{1}, \cdots, p_{m}\right)$ by $\left(p_{1}^{q} r_{1}^{\beta(q)}, \cdots, p_{m}^{q} r_{m}^{\beta(q)}\right)$. By Birkhoff ergodic Theorem([13]),

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \phi\left(T^{k}(x)\right) & =\int \phi d \lambda \text { for } \lambda-\text { a.e. } x \\
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=0}^{n-1} \psi\left(T^{k}(x)\right) & =\int \psi d \lambda \text { for } \lambda-\text { a.e. } x
\end{aligned}
$$

That is,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{n} \log \mu\left(X_{n}(x)\right) & =\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta} \log p_{i} \text { for } \lambda-\text { a.e. } x \\
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|X_{n}(x)\right| & =\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta} \log r_{i} \text { for } \lambda-\text { a.e. } x
\end{aligned}
$$

So,

$$
\lim _{k \rightarrow \infty} \frac{\log \mu\left(X_{k}(x)\right)}{\log \left|X_{k}(x)\right|}=\frac{\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta} \log p_{i}}{\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta} \log r_{i}}
$$

for λ - a.e. x.
By differentiating of (1.3) and $f(\alpha)$ with respect to q, we get $\alpha=\beta^{\prime}(q)=$ $\frac{\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta} \log p_{i}}{\sum_{i=1}^{m} p_{i}^{q} r_{i}^{\beta} \log r_{i}}$ and so $\lambda\left\{x \in X: \lim _{k \rightarrow \infty} \frac{\log \mu\left(X_{k}(x)\right)}{\log \left|X_{k}(x)\right|}=\alpha\right\}=1$. We have thus $\lambda\left(K_{\alpha}\right)=1$ by Proposition 2.3.

For (2)

$$
\frac{\log \lambda\left(X_{k}(x)\right)}{\log \left|X_{k}(x)\right|}=q \frac{\log \mu\left(X_{k}(x)\right)}{\log \left|X_{k}(x)\right|}+\beta \frac{\log \left|X_{k}(x)\right|}{\log \left|X_{k}(x)\right|} \rightarrow q \alpha+\beta=f(\alpha) \text { as } k \rightarrow \infty
$$

for all $x \in K_{\alpha}$. Since Proposition 2.3 remains true with λ replacing μ, our proof is complete.

Theorem 2.5.

(1) $K_{\alpha}=\emptyset$ for $\alpha \notin\left[\alpha_{\min }, \alpha_{\max }\right]$.
(2) $f(\alpha)=f_{H}(\alpha)=f_{p}(\alpha)$ for $\alpha \in\left[\alpha_{\min }, \alpha_{\max }\right]$.

Proof. Let $c_{i}=\frac{\log p_{i}}{\log r_{i}}$. Then, from (2.1),

$$
\frac{\log \mu\left(X_{i_{1} i_{2} \cdots i_{k}}\right)}{\log \left|X_{i_{1} i_{2} \cdots i_{k}}\right|}=\frac{\sum_{j=1}^{k} c_{i_{j}} \log r_{i_{j}}}{\sum_{j=1}^{k} \log r_{i_{j}}} \in\left[\alpha_{\min }, \alpha_{\max }\right] \text { for all } k
$$

We get Thus $\lim _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \in\left[\alpha_{\min }, \alpha_{\max }\right]$ by Proposition 2.3. In particular, $K_{\alpha}=\emptyset$ if $\alpha \notin\left[\alpha_{\text {min }}, \alpha_{\text {max }}\right]$.

If α be in $\left(\alpha_{\min }, \alpha_{\max }\right)$, then, by Theorem 2.4, there exists a mass distribution λ concentrated on K_{α} with

$$
\lim _{r \rightarrow 0} \frac{\log \lambda(B(x, r))}{\log r}=f(\alpha)
$$

for all $x \in K_{\alpha}$. It follows from Lemma 2.1 that $f(\alpha)=f_{H}(\alpha)=f_{p}(\alpha)$.
If $\alpha=\alpha_{\text {min }}$ and

$$
M=\left\{x=\pi\left(i_{1}, i_{2}, \cdots\right): \frac{\log p_{i_{j}}}{\log r_{i_{j}}}=\alpha \text { for all } j\right\}
$$

then we can easily see that $M \subset K_{\alpha}$. Since M is constructed with ratios given by r_{i}^{\prime} s for which $\frac{\log p_{i}}{\log r_{i}}=\alpha$, so $\operatorname{dim} K_{\alpha} \geq \operatorname{dim} M=\alpha^{*}$ with $\sum_{i \in\left\{i: \frac{\log p_{i}}{\log r_{i}}=\alpha\right\}} r_{i}^{\alpha_{*}}=1$, where the dim represents either dim_{H} or dim_{p}.

Let

$$
N_{q}=\left\{x: \limsup _{k \rightarrow \infty} \frac{\log \mu\left(X_{k}(x)\right)}{\log \left|X_{k}(x)\right|} \leq \alpha(q)\right\}
$$

Then, using (1.5) and $\alpha(q)$ is decreasing as q is increases, we get $K_{\alpha} \subset N_{q}$, for all $q>0$. But, we can easily prove that $\operatorname{dim} N_{q} \leq f(\alpha(q))$ for all $q>0$ by Lemma 2.1(2), (4). Hence $\operatorname{dim} K_{\alpha} \leq f(\alpha(q))$ for all $q>0$.

Thus we have $f(\alpha(q)) \rightarrow f(\alpha)=\alpha_{*}$ as $q \rightarrow \infty$ by (1.4) and (1.5).
Similarly we have $\operatorname{dim} K_{\alpha}=\alpha^{*}$ if $\alpha=\alpha_{\max }$.
Example 2.6. Put $X=[0,1] \times[0,1]$ and define S_{i}, T_{j}, and $\left\{S_{i_{1} i_{2} \cdots i_{k}}\right\}: X \rightarrow X$ $i=1,2$ and $j=1,2$ by

$$
\begin{aligned}
S_{1} & : \quad(x, y) \rightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right) \\
S_{2} & : \quad(x, y) \rightarrow\left(\frac{1}{3} x+\frac{2}{3}, \frac{1}{3} y+\frac{2}{3}\right) \\
T_{1} & =S_{1}, \\
T_{2} & : \quad(x, y) \rightarrow\left(\frac{1}{3} x+\frac{2}{3}, \frac{1}{3} y\right)
\end{aligned}
$$

and, for $k \geq 2$,

$$
S_{i_{1} i_{2} \cdots i_{k}}= \begin{cases}T_{i_{k}}, & i_{1}=1 \\ S_{i_{k}}, & i_{1}=2\end{cases}
$$

Then we get a perturbed Cantor set K generated by $\left\{S_{i_{1} i_{2} \cdots i_{k}}\right\}$ (See figure 1). Consider the $\left(p_{1}, p_{2}\right)$-Bernoulli measure μ on K, and $1=p_{1}^{q}\left(\frac{1}{3}\right)^{\beta}+p_{2}^{q}\left(\frac{1}{3}\right)^{\beta}, q \in \mathbb{R}$. If $q=0$, then $\operatorname{dim}_{H} K=\operatorname{dim}_{p} K=f(\alpha(0))=\beta(0)=\frac{\log 2}{\log 3} \doteqdot 0.63083$.

Specially, if we take $p_{1}=\frac{1}{4}$ and $p_{2}=\frac{3}{4}$ then the graphs of $f(\alpha)$ and $\beta(q)$ can be drawn like figure 2 .

Figure 1: Step 1, 2 and 3 of a Perturbed Cantor set

Figure 2: $f(\alpha)$ and $\beta(q)$

References

[1] I. S. Baek, Dimension of the perturbed Cantor sets, Real Analysis Exchange, $19(1)(1993 / 94), 269-273$.
[2] R. Cawley and R. D. Mauldin, Multifractal decompositions of Moran fractals, Adv. in Math., 92(1992), 196-236.
[3] G. A. Edgar and R. D. Mauldin, Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc., 65(1992), 604-628.
[4] K. J. Falconer, The Geometry of Fractal sets : Mathematical Foundations and Applications (John Wiley \& Sons Ltd, 1990).
[5] K. J. Falconer, Techniques on Fractal Geometry (John Wiley \& Sons Ltd, 1997).
[6] P. Grassberger and I. Procaccia, Characterization of strange attractors, Phys. Rev. Letter, 50(1983), 346-349.
[7] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. J. Shraiman, Fractal measures and their singularities : The characterization of strange sets, Phys. Rev. A., 33(1986), 1141-1151.
[8] H. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractal and strange attractors, Physica D., (1983), 435-444.
[9] S. Ikeda and Munetaka Nakamura, Dimension of measure on perturbed Cantor sets, Topology and its Applications, 122(2002), 223-236.
[10] J. F. King and J. S. Gerobnimo, Singularity spectrum for recurrent IFS attractors, Nonlinearity, 6(1992), 337-348.
[11] L. Olsen, A multifractal Formalism, Adv. in Math., 116(1995), 82-195.
[12] S. J. Taylor, The measure theory of random fractals, Math. Proc. Camb. Phil. Soc., 100(1986), 383-406.
[13] P. Walters, Ergodic Theory - Introductory Lectures, Lecture Notes in Math., 485, (Springer - Verlag, 1975).
[14] Zu-Gua Yu, Fu-Yao Ren and Ji Zhou, Fractional integral associated to generalized cookie-cutter set and its physical interpretation, J. Phys. A : Math. Gen., 30(1997), 5569-5577.

[^0]: Received May 9, 2005.

