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Abstract. Let {Kα}α∈R be the multifractal spectrums of a perturbed Cantor set K. We

find the set of values α of nonempty set Kα by using the Birkhoff ergodic theorem. And

we also show that such Kα is a fractal set in the sense of Taylor [12].

1. Introduction

Multifractal analysis [2], [3], [8], [10], [11] aims to quantify the singularity struc-
ture of measures defined on a fractal set K in RN and provide a model for phenom-
ena in which scaling occurs with a range of different power laws. Specially, if K has
a fractal dimension s and supports a natural finite measure µ, we expect that

0 < lim sup
r→0

µ(B(x, r))
(2r)s

< ∞

or more generally,

lim
r→0

log µ(B(x, r))
log(2r)

= s for all x ∈ K.

However, multifractal theory is much interesting when this does not happen. In
other word, this is concerned about subsets

Kα = {x ∈ K : lim
r→0

log µ(B(x, r))
log r

= α}

of K for the parameter α. The main problem in multifractal theory is to estimate
the size of Kα by using the f(α)-spectrum defined by their Hausdorff (or packing)
dimension. In general, one does not use the box dimensions of Kα because, for
many cases, Kα’s are dense in K, so their box dimensions are equal to the box
dimension of K itself.

There are many problems in mathematics which may readily be solved in linear
cases but which have non-linear counterparts that are much harder to analysis. In
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this research we describes a procedure which allows many results and ideas from
the linear or piecewise linear situation to be extended to non-linear cases.

Now, we analyze multifractal structure for non-linear Cantor sets in RN , so
called, perturbed Cantor set with a Bernoulli measure. For this, we first define a
perturbed Cantor set [1], [9].

Fix m ≥ 2, let Σ = {1, 2, · · · , m}, Σk = {1, 2, · · · ,m}k and Σ∗ = ∪
k≥1

Σk.

Suppose that {Si1i2···ik
: (i1, i2, · · · , ik) ∈ Σ∗} is a sequence of mappings on a

compact subset X of RN with |X| = 1 such that

Si1i2···ik
: X → X, ij ∈ {1, 2, · · · ,m}

|Si1i2···ik
(x) − Si1i2···ik

(y)| = rik
|x − y| for x, y ∈ X, 0 < rik

< 1, and there
exists 0 < C < 1 such that

(1.1) C|Xi1,··· ,ik
| ≤ min

1≤i6=j≤m
dist(Xi1i2···iki, Xi1i2···ikj) for all k ∈ N.

Put Xi1i2···ik
= Si1 ◦ Si1i2 ◦ · · · ◦ Si1i2···ik

(X) and

K :=
∞⋂

k=1

⋃

(i1,i2,···ik)∈Σk

Xi1i2···ik
.

This K is called a perturbed Cantor set generated by {Si1i2···ik
}.

Clearly the condition (1.1) implies K satisfies the open set condition.
Noting ∩∞k=1Xi1i2···ik

is a singleton, we can define a bijective map

π : Σ → K by π(i) =
∞⋂

k=1

Xi1i2···ik
,

where i = (i1, i2, · · · ) ∈ Σ.
Fix a probability vector (p1, p2, · · · , pm) with

∑m
i=1 pi = 1 and 0 < pi < 1. Let

ν be the corresponding infinite product measure on Σ. Define µ = ν ◦ π−1 which is
the Borel probability measure on K such that

(1.2) µ(Xi1i2···ik
) =

k∏

j=1

pij for (i1, i2, · · · , ik) ∈ Σk.

This µ is called the (p1, p2, · · · , pm)-Bernoulli measure on K.
For each α ∈ R, let

Kα := {x ∈ RN : lim
r→0

log µ(B(x, r))
log r

= α},

where B(x, r) = {y ∈ RN : |x − y| < r}. We say {Kα}α∈R is the multifractal
decomposition of K, and {fH(α)}α ∈ R, {fp(α)}α ∈ R the multifractal spectrums
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(or the singularity spectrums) of µ, where fH(α)(fp(α)) is the Hausdorff(packing)
dimension of Kα (see [4], [5] for more information).

We will prove that such Kα is a fractal in the sense of Taylor [12] and the
multifractal spectrums of µ are the Legendre transformation of a famous auxiliary
function β satisfied with

∑m
i=1 pq

i r
β
i = 1.

Now let us recall some of basic facts for the auxiliary function β(q) from [2], [3],
[10].

Given a real number q, we define β = β(q) as the positive number satisfying

(1.3)
m∑

i=1

pq
i r

β
i = 1.

Then β : R → R is a decreasing real analytic function with lim
q→−∞

β(q) = ∞ and

lim
q→∞

β(q) = −∞. Clearly β(1) = 0. And let f be the Legendre transformation of β.

Then f : [αmin, αmax] → R is given by f(α) = β(q) + αq, where

αmin = min
1≤i≤m

log pi

log ri
, αmax = max

1≤i≤m

log pi

log ri
,

are the negative slope of the asymptotes of the function β. And f(αmin) = α∗,
f(αmax) = α∗ with

(1.4)
∑

i ∈ {i: log pi
log ri

= αmin}
rα∗
i = 1 and

∑

i ∈ {i: log pi
log ri

= αmax}
rα∗
i = 1

In particular,

(1.5) lim
q→∞

α(q) = αmin and lim
q→−∞

α(q) = αmax.

2. Main results

Let’s list or prove some basic but useful facts before our main theorem.

Lemma 2.1 [5, Proposition 2.3]. Let E be a Borel set and µ be a finite measure on
RN as in (1.3).

(1) If lim infr→0
log µ(B(x, r))

log r
≥ s for all x ∈ E and µ(E) > 0,

then dimH E ≥ s.

(2) If lim infr→0
log µ(B(x, r))

log r
≤ s for all x ∈ E, then dimH E ≤ s.

(3) If lim supr→0

log µ(B(x, r))
log r

≥ s for all x ∈ E and µ(E) > 0,

then dimp E ≥ s.



506 Hun Ki Baek and Hung Hwan Lee

(4) If lim supr→0

log µ(B(x, r))
log r

≤ s for all x ∈ E, then dimp E ≤ s.

We can easily get the following Lemma from the definition of a perturbed Cantor
set.

Lemma 2.2. Let d = min
1≤i 6=j≤m

dist(Xi, Xj) and C as in (1.1). If x ∈ Xi1i2···ik
∩K

and |Xi1i2···ik
| ≤ r < |Xi1i2···ik

|d−1, then

B(x,Cdr) ∩K ⊂ Xi1i2···ik
∩K ⊂ B(x, r).

For x ∈ K, we denote Xk(x) for the k-th level set Xi1i2···ik
that contains x.

It is not hard to show the next Proposition with Lemma 2.2.

Proposition 2.3.

lim
r→0

log µ(B(x, r))
log r

= α iff lim
k→0

log µ(Xk(x))
log |Xk(x)| = α.

We now introduce a mass distribution measure λ supported on Kα(q) for fixed
q. For given q ∈ R and β = β(q), we define a probability measure λ on X by

(2.1) λ(Xi1i2···ik
) = µ(Xi1i2···ik

)q|Xi1i2···ik
|β(q)

and extend this to a Borel measure on RN in the usual way.

Theorem 2.4. Let α ∈ (αmin, αmax). Then

(1) λ(Kα) = 1.

(2) limr→0
log λ(B(x,r))

log r = f(α) for all x ∈ Kα.

Proof. (1) Define φ(x) =log µ(Xi1) and ψ(x) =log |Xi1 | =log ri1 for x =
π(i1, i2, · · · ). Then

∫
|φ|dλ =

m∑

i=1

λ(Xi)| log µ(Xi)| =
m∑

i=1

pq
i r

β
i | log pi| < ∞ and

∫
|ψ|dλ =

m∑

i=1

pq
i r

β
i | log ri| < ∞.

Define the shift transformation T : K → K by T (x) = π(i2, i3, · · · ), where x =
π(i1, i2, · · · ). Since the shift map σ : Σ → Σ defined by σ(i1, i2, · · · ) = (i2, i3, · · · )
is ergodic with respect to ν, so is T respect to µ. Hence we can easily show that
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T is ergodic with respect to λ by replacing a probability vector (p1, · · · , pm) by
(pq

1r
β(q)
1 , · · · , pq

mr
β(q)
m ). By Birkhoff ergodic Theorem([13]),

lim
n→∞

1
n

n−1∑

k=0

φ(T k(x)) =
∫

φ dλ for λ− a.e. x

lim
n→∞

1
n

n−1∑

k=0

ψ(T k(x)) =
∫

ψ dλ for λ− a.e. x.

That is,

lim
n→∞

1
n

log µ(Xn(x)) =
m∑

i=1

pq
i r

β
i log pi for λ− a.e. x

lim
n→∞

1
n

log |Xn(x)| =
m∑

i=1

pq
i r

β
i log ri for λ− a.e. x.

So,

lim
k→∞

log µ(Xk(x))
log |Xk(x)| =

∑m
i=1 pq

i r
β
i log pi∑m

i=1 pq
i r

β
i log ri

for λ - a.e. x.
By differentiating of (1.3) and f(α) with respect to q, we get α = β′(q) =Pm

i=1 pq
i rβ

i log piPm
i=1 pq

i rβ
i log ri

and so λ

{
x ∈ X : lim

k→∞
log µ(Xk(x))
log |Xk(x)| = α

}
= 1. We have thus

λ(Kα) = 1 by Proposition 2.3.
For (2)

log λ(Xk(x))
log |Xk(x)| = q

log µ(Xk(x))
log |Xk(x)| + β

log |Xk(x)|
log |Xk(x)| → qα + β = f(α) as k →∞

for all x ∈ Kα. Since Proposition 2.3 remains true with λ replacing µ, our proof is
complete. ¤

Theorem 2.5.

(1) Kα = ∅ for α /∈ [αmin, αmax].

(2) f(α) = fH(α) = fp(α) for α ∈ [αmin, αmax].

Proof. Let ci =
log pi

log ri
. Then, from (2.1),

log µ(Xi1i2···ik
)

log |Xi1i2···ik
| =

∑k
j=1 cij log rij∑k

j=1 log rij

∈ [αmin, αmax] for all k.
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We get Thus limr→0
log µ(B(x, r))

log r
∈ [αmin, αmax] by Proposition 2.3. In particular,

Kα = ∅ if α /∈ [αmin, αmax].
If α be in (αmin, αmax), then, by Theorem 2.4, there exists a mass distribution

λ concentrated on Kα with

lim
r→0

log λ(B(x, r))
log r

= f(α)

for all x ∈ Kα. It follows from Lemma 2.1 that f(α) = fH(α) = fp(α).
If α = αmin and

M = {x = π(i1, i2, · · · ) :
log pij

log rij

= α for all j},

then we can easily see that M ⊂ Kα. Since M is constructed with ratios given by

r′is for which
log pi

log ri
= α, so dim Kα ≥ dim M = α∗ with

∑
i ∈ {i :

log pi
log ri

=α} rα∗
i = 1,

where the dim represents either dimH or dimp.
Let

Nq = {x : lim sup
k→∞

log µ(Xk(x))
log |Xk(x)| ≤ α(q)}.

Then, using (1.5) and α(q) is decreasing as q is increases, we get Kα ⊂ Nq, for all
q > 0. But, we can easily prove that dim Nq ≤ f(α(q)) for all q > 0 by Lemma
2.1(2), (4). Hence dimKα ≤ f(α(q)) for all q > 0.

Thus we have f(α(q)) → f(α) = α∗ as q →∞ by (1.4) and (1.5).
Similarly we have dim Kα = α∗ if α = αmax. ¤

Example 2.6. Put X = [0, 1] × [0, 1] and define Si, Tj , and {Si1i2···ik
} : X → X

i = 1, 2 and j = 1, 2 by

S1 : (x, y) →
(1

3
x,

1
3
y
)

S2 : (x, y) →
(1

3
x +

2
3
,

1
3
y +

2
3

)

T1 = S1,

T2 : (x, y) →
(1

3
x +

2
3
,

1
3
y
)

and, for k ≥ 2,

Si1i2···ik
=

{
Tik

, i1 = 1
Sik

, i1 = 2.

Then we get a perturbed Cantor set K generated by {Si1i2···ik
}(See figure 1). Con-

sider the (p1, p2)-Bernoulli measure µ on K, and 1 = pq
1(

1
3 )β + pq

2(
1
3 )β , q ∈ R. If

q = 0, then dimH K = dimp K = f(α(0)) = β(0) =
log 2
log 3

+ 0.63083.
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Specially, if we take p1 =
1
4

and p2 = 3
4 then the graphs of f(α) and β(q) can

be drawn like figure 2.

Figure 1: Step 1, 2 and 3 of a Perturbed Cantor set

Figure 2: f(α) and β(q)
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