• Title/Summary/Keyword: Bernoulli's numbers

Search Result 41, Processing Time 0.022 seconds

ON FULLY MODIFIED q-POLY-EULER NUMBERS AND POLYNOMIALS

  • C.S. RYOO
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.1-11
    • /
    • 2024
  • In this paper, we define a new fully modified q-poly-Euler numbers and polynomials of the first type by using q-polylogarithm function. We derive some identities of the modified polynomials with Gaussian binomial coefficients. We also explore several relations that are connected with the q-analogue of Stirling numbers of the second kind.

A NUMERICAL INVESTIGATION ON THE ZEROS OF THE TANGENT POLYNOMIALS

  • Ryoo, C.S.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.3_4
    • /
    • pp.315-322
    • /
    • 2014
  • In this paper, we observe the behavior of complex roots of the tangent polynomials $T_n(x)$, using numerical investigation. By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the tangent polynomials $T_n(x)$. Finally, we give a table for the solutions of the tangent polynomials $T_n(x)$.

ASYMPTOTIC BEHAVIOR OF THE INVERSE OF TAILS OF HURWITZ ZETA FUNCTION

  • Lee, Ho-Hyeong;Park, Jong-Do
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1535-1549
    • /
    • 2020
  • This paper deals with the inverse of tails of Hurwitz zeta function. More precisely, for any positive integer s ≥ 2 and 0 ≤ a < 1, we give an algorithm for finding a simple form of fs,a(n) such that $$\lim_{n{\rightarrow}{\infty}}\{\({\sum\limits_{k=n}^{\infty}}{\frac{1}{(k+a)^s}}\)^{-1}-f_{s,a}(n)\}=0$$. We show that fs,a(n) is a polynomial in n-a of order s-1. All coefficients of fs,a(n) are represented in terms of Bernoulli numbers.

SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.467-480
    • /
    • 2009
  • In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

  • PDF

NOTES ON SOME IDENTITIES INVOLVING THE RIEMANN ZETA FUNCTION

  • Lee, Hye-Rim;Ok, Bo-Myoung;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.165-173
    • /
    • 2002
  • We first review Ramaswami's find Apostol's identities involving the Zeta function in a rather detailed manner. We then present corrected, or generalized formulas, or a different method of proof for some of them. We also give closed-form evaluation of some series involving the Riemann Zeta function by an integral representation of ζ(s) and Apostol's identities given here.

Multivariate Poisson Distribution Generated via Reduction from Independent Poisson Variates

  • Kim, Dae-Hak;Jeong, Heong-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.953-961
    • /
    • 2006
  • Let's say that we are given a k number of random variables following Poisson distribution that are individually dependent and which forms multivariate Poisson distribution. We particularly dealt with a method of creating random numbers that satisfies the covariance matrix, where the elements of covariance matrix are parameters forming a multivariate Poisson distribution. To create such random numbers, we propose a new algorithm based on the method reducing the number of parameter set and deal with its relationship to the Park et al.(1996) algorithm used in creating multivariate Bernoulli random numbers.

  • PDF

EVALUATION OF CERTAIN ALTERNATING SERIES

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.263-273
    • /
    • 2014
  • Ever since Euler solved the so-called Basler problem of ${\zeta}(2)=\sum_{n=1}^{\infty}1/n^2$, numerous evaluations of ${\zeta}(2n)$ ($n{\in}\mathbb{N}$) as well as ${\zeta}(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate ${\zeta}(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.