SEVERAL RESULTS ASSOCIATED WITH THE RIEMANN ZETA FUNCTION

  • Received : 2009.06.01
  • Accepted : 2009.08.14
  • Published : 2009.09.30

Abstract

In 1859, Bernhard Riemann, in his epoch-making memoir, extended the Euler zeta function $\zeta$(s) (s > 1; $s{\in}\mathbb{R}$) to the Riemann zeta function $\zeta$(s) ($\Re$(s) > 1; $s{\in}\mathbb{C}$) to investigate the pattern of the primes. Sine the time of Euler and then Riemann, the Riemann zeta function $\zeta$(s) has involved and appeared in a variety of mathematical research subjects as well as the function itself has been being broadly and deeply researched. Among those things, we choose to make a further investigation of the following subjects: Evaluation of $\zeta$(2k) ($k {\in}\mathbb{N}$); Approximate functional equations for $\zeta$(s); Series involving the Riemann zeta function.

Keywords

References

  1. V. S. Adamchik and H. M. Srivastava, Some series of the Zeta and related functions, Analysis 18 (1998), 131-144.
  2. B. C. Berndt, Ramanujan's Notebooks, Part I, Springer-Verlag, New York, Berlin, Heidelberg, and Tokyo, 1985.
  3. J. Bernoulli, Ars Conjectandi, Basel, 1713. Reprinted on pp. 106-286 in Vol. 3 of Die Werke von Jakob Bernoulli, Birkhauser Verlag, Basel, 1975, Academic Press, New York.
  4. J. W. Brown and R. V. Churchill, Complex Variables and Applications, 8th Edi., McGraw-Hill, Inc., New York, 2009.
  5. J. Choi and D. Cvijovic, Values of the polygamma functions at rational arguments, J. Phys. A: Math. Theor. 40 (2007), 15019-15028. https://doi.org/10.1088/1751-8113/40/50/007
  6. J. Choi and T. Y. Seo, Identities involving series of the Riemann Zeta function, Indian J. Pure Appl. Math. 30 (1999), 649-652.
  7. J. Choi and H. M. Srivastava, Certain classes of series involving the Zeta function, J. Math. Anal. Appl. 231 (1999), 91-117. https://doi.org/10.1006/jmaa.1998.6216
  8. J. Choi and H. M. Srivastava, Certain classes of series associated with the Zeta function and multiple Gamma functions, J. Comput. Appl. Math. 118 (2000), 87-109. https://doi.org/10.1016/S0377-0427(00)00311-3
  9. J. Choi and H. M. Srivastava, Explicit evaluation of Euler and related sums, The Ramanujan J. 10 (2005), 51-70. https://doi.org/10.1007/s11139-005-3505-6
  10. H. M. Edwards, Riemann's Zeta Function, Dover Publications, Inc., Mineola, New York, 2001.
  11. G. H. Hardy, Divergent Series, Clarendon (Oxford University) Press, Oxford, London, and New York 1949.
  12. A. Ivic, The Riemann Zeta-Function, Dover Publications, Inc., Mineola, New York, 2003.
  13. K. Knopp, Theory and Application of Infinite Series, Second English Ed. (Translated from the Second German Ed. and Revised in accordance with the Fourth German Ed. by R. C. H. Young), Hafner Publishing Company, New York, 1951.
  14. Z. A. Melzak, Companion to Concrete Mathematics, Vol. I: Mathematical Techniques and Various Applications John Wiley and Sons, New York, London, Sydney, and Toronto, 1973.
  15. B. Riemann, Uber die Anzahl der Primzahlen unter einer gegebenen Grosse, Monatsber. Akad. Berlin (1859), 671-680.
  16. J. D. Shallit and K. Zikan, A theorem of Goldbach, Amer. Math. Monthly 93 (1986), 402-403. https://doi.org/10.2307/2323614
  17. O. Spiess, Die Summe der reziproken Quadratzahlen, in Festschrift zum 60 Geburtstag von Prof. Dr. Andreas Speiser (L. V. Ahlfors et al., Editors), pp. 66-86, Fussli, Zurich, 1955.
  18. H. M. Srivastava, A unified presentation of certain classes of series of the Riemann Zeta function, Riv. Mat. Univ. Parma (4) 14 (1988), 1-23.
  19. H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Acad. Publ., Dordrecht-Boston-London, 2001.
  20. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis (4th ed.), Cambridge Univ. Press, Cambridge-London-New York, 1963.
  21. D. Zagier, Values of Zeta functions and their applications, First European Congress of Mathematics, Vol. II (Paris, 1992) (A. Joseph, F. Mignot, F. Murat, B. Prum, and R. Rentschler, Editors) pp. 497-512, Progress in Mathematics 120, Birkhauser, Basel, 1994.