• 제목/요약/키워드: Bayesian Posterior Probability

검색결과 123건 처리시간 0.024초

부적합률의 다중검정을 위한 베이지안절차 (Bayesian Procedure for the Multiple Test of Fraction Nonconforming)

  • 김경숙;김희정;나명환;손영숙
    • 품질경영학회지
    • /
    • 제34권1호
    • /
    • pp.73-77
    • /
    • 2006
  • In this paper, the Bayesian procedure for the multiple test of fraction nonconforming, p, is proposed. It is the procedure for checking whether the process is out of control, in control, or under the permissible level for p. The procedure is as follows: first, setting up three types of models, $M_1:p=p_0,\;M_2:pp_0$, second, computing the posterior probability of each model. and then choosing the model with the largest posterior probability as a model most fitted for the observed sample among three competitive models. Finally, the simulation study is performed to examine the proposed method.

부적합률의 다중검정을 위한 베이지안절차 (Bayesian Procedure for the Multiple Test of Fraction Nonconforming)

  • 김경숙;김희정;나명환;손영숙
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2006년도 춘계학술대회
    • /
    • pp.325-329
    • /
    • 2006
  • In this paper, the Bayesian procedure for the multiple test of fraction nonconforming, p, is proposed. It is the procedure for checking whether the process is out of control, in control, or under the permissible level for p. The procedure is as follows: first, setting up three types of models, $M_1:p=p_0,\;M_2:pp_0$, second, computing the posterior probability of each model. and then choosing the model with the largest posterior probability as a model most fitted for the observed sample among three competitive models. Finally, the simulation study is performed to examine the proposed method.

  • PDF

제한조건이 있는 선형회귀 모형에서의 베이지안 변수선택 (Bayesian Variable Selection in Linear Regression Models with Inequality Constraints on the Coefficients)

  • 오만숙
    • 응용통계연구
    • /
    • 제15권1호
    • /
    • pp.73-84
    • /
    • 2002
  • 계수에 대한 부등 제한조건이 있는 선형 회귀모형은 경제모형에서 가장 흔하게 다루어지는 것 중의 하나이다. 이는 특정 설명변수에 대한 계수의 부호를 음양 중 하나로 제한하거나 계수들에 대하여 순서적 관계를 주기 때문이다. 본 논문에서는 이러한 부등 제한이 있는 선형회귀 모형에서 유의한 설명변수의 선택을 해결하는 베이지안 기법을 고려한다. 베이지안 변수선택은 가능한 모든 모형의 사후확률 계산이 요구되는데 본 논문에서는 이러한 사후확률들을 동시에 계산하는 방법을 제시한다. 구체적으로 가장 일반적인 모형의 모수에 대한 사후표본을 깁스 표본기법을 적용시켜 얻은 후 이를 이용하여 모든 가능한 모형의 사후확률을 계산하고 실제적인 자료에 본 논문에서 제안된 방법을 적용시켜 본다.

우도원리에 대한 분석과 그에 따른 교육적 시사점에 대한 연구 (A Study on Analysis of Likelihood Principle and its Educational Implications)

  • 박선용;윤형석
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제55권2호
    • /
    • pp.193-208
    • /
    • 2016
  • This study analyzes the likelihood principle and elicits an educational implication. As a result of analysis, this study shows that Frequentist and Bayesian interpret the principle differently by assigning different role to that principle from each other. While frequentist regards the principle as 'the principle forming a basis for statistical inference using the likelihood ratio' through considering the likelihood as a direct tool for statistical inference, Bayesian looks upon the principle as 'the principle providing a basis for statistical inference using the posterior probability' by looking at the likelihood as a means for updating. Despite this distinction between two methods of statistical inference, two statistics schools get clues to compromise in a regard of using frequency prior probability. According to this result, this study suggests the statistics education that is a help to building of students' critical eye by their comparing inferences based on likelihood and posterior probability in the learning and teaching of updating process from frequency prior probability to posterior probability.

A BAYESIAN METHOD FOR FINDING MINIMUM GENERALIZED VARIANCE AMONG K MULTIVARIATE NORMAL POPULATIONS

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제32권4호
    • /
    • pp.411-423
    • /
    • 2003
  • In this paper we develop a method for calculating a probability that a particular generalized variance is the smallest of all the K multivariate normal generalized variances. The method gives a way of comparing K multivariate populations in terms of their dispersion or spread, because the generalized variance is a scalar measure of the overall multivariate scatter. Fully parametric frequentist approach for the probability is intractable and thus a Bayesian method is pursued using a variant of weighted Monte Carlo (WMC) sampling based approach. Necessary theory involved in the method and computation is provided.

A Bayesian Variable Selection Method for Binary Response Probit Regression

  • Kim, Hea-Jung
    • Journal of the Korean Statistical Society
    • /
    • 제28권2호
    • /
    • pp.167-182
    • /
    • 1999
  • This article is concerned with the selection of subsets of predictor variables to be included in building the binary response probit regression model. It is based on a Bayesian approach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the probit regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. The appropriate posterior probability of each subset of predictor variables is obtained through the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as the one with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

A Bayesian Method for Narrowing the Scope of Variable Selection in Binary Response Logistic Regression

  • Kim, Hea-Jung;Lee, Ae-Kyung
    • 품질경영학회지
    • /
    • 제26권1호
    • /
    • pp.143-160
    • /
    • 1998
  • This article is concerned with the selection of subsets of predictor variables to be included in bulding the binary response logistic regression model. It is based on a Bayesian aproach, intended to propose and develop a procedure that uses probabilistic considerations for selecting promising subsets. This procedure reformulates the logistic regression setup in a hierarchical normal mixture model by introducing a set of hyperparameters that will be used to identify subset choices. It is done by use of the fact that cdf of logistic distribution is a, pp.oximately equivalent to that of $t_{(8)}$/.634 distribution. The a, pp.opriate posterior probability of each subset of predictor variables is obtained by the Gibbs sampler, which samples indirectly from the multinomial posterior distribution on the set of possible subset choices. Thus, in this procedure, the most promising subset of predictors can be identified as that with highest posterior probability. To highlight the merit of this procedure a couple of illustrative numerical examples are given.

  • PDF

A Bayesian Approach to Finite Population Sampling Using the Concept of Pivotal Quantity

  • Hwang, Hyungtae
    • Communications for Statistical Applications and Methods
    • /
    • 제10권3호
    • /
    • pp.647-654
    • /
    • 2003
  • Bayesian probability models for finite populations are considered assuming so-called the super-population. We find the posterior distribution of population mean by a new approach, using the concept of pivotal quantity for the small sample case. A large sample theory is also treated throught the concept of asymptotically pivotal quantity.

베타-이항 분포에서 Gibbs sampler를 이용한 평가 일치도의 사후 분포 추정 (Posterior density estimation of Kappa via Gibbs sampler in the beta-binomial model)

  • 엄종석;최일수;안윤기
    • 응용통계연구
    • /
    • 제7권2호
    • /
    • pp.9-19
    • /
    • 1994
  • 평가자간 평가 일치도(measure of agreement)를 나타내는 모수 $\kappa$와 양성 반응 비율 $\mu$를 지닌 베타-이항 분포 모형은 심리학 분야에서 많이 다루어지는 모형이다. 이 모형에서 $\kappa$에 대한 추정은 $\mu$가 0에 가까운 값을 가질 때 우도함수를 이용한 전통적 추론 방법의 적용이 어렵다. 본 논문에서는 이러한 문제를 Gibbs sampler를 이용한 Bayesian 분석 방법을 적용시켜 주변 사후 밀도 함수를 추정하였으며 이를 이용하여 Bayesian 추정값도 구하였다.

  • PDF

Noninformative priors for the ratio of parameters of two Maxwell distributions

  • Kang, Sang Gil;Kim, Dal Ho;Lee, Woo Dong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권3호
    • /
    • pp.643-650
    • /
    • 2013
  • We develop noninformative priors for a ratio of parameters of two Maxwell distributions which is used to check the equality of two Maxwell distributions. Specially, we focus on developing probability matching priors and Je reys' prior for objectiv Bayesian inferences. The probability matching priors, under which the probability of the Bayesian credible interval matches the frequentist probability asymptotically, are developed. The posterior propriety under the developed priors will be shown. Some simulations are performed for identifying the usefulness of proposed priors in objective Bayesian inference.