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A Bayesian Variable Selection Method for Binary
Response Probit Regression'

Hea-Jung Kim!

ABSTRACT

This article is concerned with the selection of subsets of predictor vari-
ables to be included in building the binary response probit regression model.
It is based on a Bayesian approach, intended to propose and develep a pro-
cedure that uses probabilistic considerations for selecting promising subsets.
This procedure reformulates the probit regression setup in a hierarchical
normal mixture model by introducing a set of hyperparameters that will be
used to identify subset choices. The appropriate posterior probability of each
subset of predictor variables is obtained through the Gibbs sampler, which
samples indirectly from the multinomial posterior distribution on the set of
possible subset choices. Thus, in this procedure, the most promising subset
of predictors can be identified as the one with highest posterior probability.
To highlight the merit of this procedure a couple of illustrative numerical
examples are given.

Keywords: Binary response probit regression; Variable selection; Hierarchical
normal mixture model; Data augmentation; Gibbs sampler; High frequency model

1. INTRODUCTION

A vast literature in quality management, statistics, and biometrics is con-
cerned with the analysis of binary response data. When the dependent variable
of a regression model is observed to be qualitative variable expressed as binary
output, we may consider a model given by

Y = H(XI) +e, (L1)

where Y; is a binary outpuf, X; is a p x 1 predictor vector, 8 is a vector of
unknown coefficients and ¢;’s are uncorrelated with E(g;) = 0, 7 = 1,...,n,
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respectively. Here H(-) is a known cdf linking the probabilities p; = Pr(Y; = 1)
with the linear structure X[, so that p; = H(X]5). In particular, when the link
cdf H(-)(having linking function H~!(.)) is taken to be the cdf of the standard
normal distribution, ®(-), the model is called probit regression model. The model
is discussed extensively in Nelder and McCullagh(1987) and Collett(1991).

At some point during the analysis with the probit regression model, one may
wish to delete some predictors from the model. The search for a best submodel
is called variable selection or subset selection. A wide variety of selection proce-
dures based on a comparison of all 2P possible submodels have been proposed,
including AIC, BIC, and the marginal likelihood criterion by Chib (1995). It is
well known that, in case p is large, the computational requirements for these pro-
cedures can be prohibitive. To mitigate the computational burden, one may use
heuristic methods to restrict attention to a smaller number of potential subsets.
Based on this idea, the stepwise procedures have been suggested, such as forward
selection or backward elimination, which sequentially include or exclude variables
based on the deviance considerations (cf. Collett 1991). However, It has long
been known that one needs extreme care to use the stepwise procedures in the
probit regression. When one performs many significance tests in the course of
the stepwise procedures, each at a level of ¢, the overall probability of rejecting
at least one true null hypothesis is much larger than «. Furthermore, none of
the p-values for the parameter estimates have the conventional meaning because
none of the test statistics has a normal or chi-square distribution.

The purpose of this article is to develop and suggest a variable selection
procedure that not only avoids the overwhelming comparison of all 2 possible
submodels for the probit regression model, but eliminates the problems of the
stepwise procedures. The procedure selects potentially promising subsets of the
predictor variables, z1, ..., p, so that it may narrow the scope of possible models
for further considerations. This procedure, initiated by George and McCulloch
(1993), is based on a synthesis of the hierarchical Bayes modeling (cf. Mitchell
and Beauchamp 1988) and Gibbs sampling (cf. Casella and George 1992).

2. HIERARCHICAL MODEL FOR VARIABLE SELECTION

Suppose that we have n binary response observations Y;, 2 = 1,...,n, where
E(Y;) = p; which is the success probability corresponding to the i-th observa-
tion. The binary response probit regression model for the dependence of p; on p
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explanatory variables vector, X; = (215,22, ...,2Zpi) 18
probit(p;) = @ '(») = 8'X;, i=1,...,n. (2.1)
where 8 = (B1,...,0p) is an unknown coefficient vector. As a result of some
arrangement,
) _1y2 [P L o
pi = ®(BX:) = (2m) / exp(— ) du (2.2)
-0

Since Y; is an observation from a Bernoulli distribution with mean p;, correspond-
ing model for the expected value of Y; is E(Y;) = ®(F'X;). For the model (2.1),
selecting a subset of predictors is equivalent to setting to 0 those 3;’s correspond-
ing to the unselected predictors. Afterwards, we shall assume that z1,...,z,
contains no variable that would be included in every possible model. If an inter-
cept was to be included in the variable selection (as is usually the case), then one
should set z1;, =1,i=1,...,n.
The likelihood function of the model (2.1) is given by

L) = T 0-p)" ™, (23)

where p; is defined by (2.2). This likelihood depends on the unknown success
probabilities p;, which in turn depends on 3 through (2.2), so that the likelihood
function may be regarded as a function of 3.

To extract information relevant to variable selection, we consider the following
hierarchical model structure (cf. Bernardo and Smith, 1994). In conventional
terminology, the first stage of the hierarchy relates data to parameters via (2.3).
A key feature of this hierarchical model is that each component of 8 is modeled as
having come from a mixture of two normal distribution with different variances.
Thus the second stage models can be simply expressed via the introduction of a
set of distinct hyperparameters {a; = 0or 1, j =1,...,p}, so that our parameter
B is a random sample from a normal mixture represented by

Bilay ~ (1 - a;)N(0,03) + a;N(0,c303), j =1,...,p, (2.4)

where Pr(a; = 1) = 1 — Pr(a; = 0) = ¢; and hyperparameters o;, g; and
¢; are known. A similar setup in this context was considered by Mitchell and
Beauchamp (1988) and George and McCulloch (1993).

If we set small o; and large c; in the above formulation, we have the following
interpretations: (a) If o; = 0, §; would probably be so small that it could
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be safely estimated by 0; (b) If a; = 1, then non-zero estimate of §; should
probably be included in the final model. Therefore, ¢; may be thought of as the
prior probability that 8; will require a non-zero estimate, or equivalently that
J-th predictor variable z; should be included in the probit regression model.

The second stage of the hierarchy thus provides the joint prior for §;|a;’s in
(2.4) as a multivariate normal prior given by

Bl ~ Np(0, Do RD,), (2.5)
where o = (ay,-..,0p), R is the prior correlation matrix, and
D, = diag{ai01,...,ap05},

with a; = 1 if @; = 0 and a; = ¢; if a; = 1. For choosing ¢;(> 1) and o; in (2.5),
a useful guide is the following. The density of N (0, c?ajz) is larger than that of
N(0,03) iff |B;] > 6(c;)o;, where 6(c;) = (2In(c;)c?/(c? — 1))1/2. Tt may be also
useful to note that ¢; is the ratio of the heights of N(O7 ¢?o?) and N(0,07) at 0,
indicating the prior odds of excluding x; when (; is very close to 0.

The third, and final, stage specifies beliefs about ¢;’s. This can be dore via

a reasonable choice of the prior density for a:

p
H (1 @)

Therefore, the complete model structure of the hierarchy has the form.
p(Y|B) = pr"(l - pi)' 7Y,
p(Ble) = (2n)*|DaRDa|"? exp{ -2 f(DaRDa) 6},

pla) = H (1 gj)=).

In many applications, it may be of interest to make inferences both about
the unit characteristics, the 3;’s, and the population characteristics, the «;’s. In
either case, straightforward probability manipulations involving Bayes’ theorem
provide the required joint posterior density of 3 and o from which one can make
the inference of interest:

£(6,01Y) = ) ?/*|DRDa| 2 exp{ 56 (DaRD) M6} (26)
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P n
x [T q5? (1 = g)=) T pf (1 - p)' 7Y,
j=1 =1

where C in the above equation is a generic proportionality constant.

Our main reason for embedding the probit model (2.1) in the above hierar-
chical mixture model is to obtain the marginal posterior distribution A{a|Y) «
[ (Y]a)r(a), which contains the information relevant to variable selection. How-
ever, it is easily seen that the problem of analytically calculating the marginal
from (2.6) is a challenging one. Fortunately, recent developments of a MCMC
method, say the Gibbs sampler, provide a method that directly addresses simu-
lation based calculation of the marginal posterior (cf. Chib, 1995).

3. GIBBS SAMPLING SCHEME

As in Albert and Chib (1993), introduce a set of latent variables {Z;, i =
1,...,n}, where the Z; are independent N(X3,1),andY; =1if Z; > 0and ¥; =
0 otherwise. It can be easily shown that Y; are independent Bernoulli random
variables with p; = Pr(Y; = 1) = ®(X[{). Thus, under this data augmentation
approach, we can rewrite the likelihood in (2.3) as that of the unobservables 3
and Z;’s:

n .
LB, Z) = [[{I(Z > 0)I(Y; =1) + I(Z; < 0)I(Y; = 0)}¢(Z:; X{6,1), (3.1)
i=1
where Z = (Z1,...,2Z,), ¢(;X.3,1) is the N(X]3,1) pdf, and I(W € A) is the
indicator function that is equal to 1 if the random variable W is contained in the
set A.
Under the hierarchical model, the joint posterior density of the unobservables
B, a and Z, given the data Y = (¥1,...,Y,), is thus obtained by

F(8, . Z|Y) = O(2n)?/*| Do RDo| M exp{~ 5/ (DaRDa) ™6} (32)

o T 6 (1- )09 T[{(Z: > OI(Y: = 1)+ 1(Z: < O)I(Y; = 0)}(Zs; XI8,1),

i=1 i=1
where (' here is a generic proportionality constant.

3.1. The Gibbs Sampler

Computation of the marginal posterior distribution of ¢ using the Gibbs sam-
pling algorithm requires only the posterior distribution of & conditional on 8 and
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Z, the posterior distribution of 8 conditional on @ and Z and the posterior of Z
conditional on B and «, and these fully conditional distributions are of standard
forms.

From (3.2), the posterior density of 8 given « and Z is given by

_ 1 - e
(Y, Z,a) o |DaRDo|™*? exp{~2 6 (DaRDa)™ A} ]| 6(2i; XiB 1) (3.3)
=1
It is noted that this fully conditional posterior density is the usual posterior
density for the regression parameter in the normal linear model

Z =XpB+e¢€ where e ~ N,(0,1,), (3.4)

where (3 is assigned to the proper Np(0, DoRD,) prior and X = (X1,...,Xy)".
Thus, the result by Zellner (1971) gives the conditional posterior of 5 as

BlY,Z,o ~ Ny(B,B), (3.5)

where § = {(DaRD,)~! + X'X} " Y(X'Z) and B = {(D,RD,)~! + X'X}~ L.
The fully conditional distributions of Zy, ..., Z, are independently distributed
as truncated normal distributions :

Additional variables a,...,q, are conditionally distributed as
b
o;|Y, Z, 8,05 ~ Be (bj n dj) ; (3.7)
where a(;) = (@1, .., ®j-1,®j41,-- -, &), Be(y) denotes a Bernoulli distribution

with parameter 7,
1
b; = {]DaRDC,]_l/? exp{—iﬂ’(DaRDa)_lﬁ}} xq)
Q=

and 1
dj = {IDQRDQI_W exp{—gﬁ’(DaRDa)‘lﬁ}} x (1 - gj).

a_,-:O
Remark 3.1. If we choose the prior correlation R = I, in (2.6), then the de-
pendence through out (3.7) may be eliminated so that
b exp{~5}/(2c03)}g;
bj+d;j  exp{—B7/(2ci07)}g; + ¢jexp{~F7/(207)}(1 — ¢;)

This simplifies the calculation required.
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Remark 3.2. For large p, it is inefficient to invert the pxp matrix {(DyRDg) =+
X'X} in each pass of the Gibbs sampling algorithm. Instead, let L, be a factor of
DoRDg such that LoL!, =D, RD,. Let L’ X'X L, have orthogonal factorization
Py Ao F, ie. P, is the corresponding ordered eigenvectors so that P, P, = P! P,
= I,. Finally, let Hy, = LyP,. Then

-1
{(PaRDo)™ 4+ XX} = Holl, + Aa) 11, (5)

This leads to an efficient computation for the inverse matrix for large p.

3.2. Gibbs Sampling Scheme and Subset Selection

The hierarchical nature of the model gives relatively straightforward imple-
mentation of the Gibbs sampling scheme. A possible complication could be the
simulation from truncated normal distribution. This can be easily conducted by
the algorithm of Devroye (1986). By repeated successive Gibbs sampling from
(3.5) through (3.7), we would get the Gibbs sequence

BO 7O 40 g1 Z0) (1) 50 Z® 4@ | g0 7B 4 (3.9)

that is an ergodic Markov chain. Therefore, as ¢ approaches infinity, the joint
distribution of a{® can be shown to approach the joint distribution of a. Thus,
for large t, say t*, (") can be regarded as one simulated value from the marginal
posterior of a.

For the determination of ¢*, we may use a variety of diagnostic tools (cf.
Cowles and Carlin, 1996):

(i) Run a several parallel chains with starting points drawn from what we
believe is a distribution overdispersed with respect to the stationary distribution.
Then we visually inspect these chains by overlaying their sampled values on a
common graph for -2in(the joint posterior in (3.2) whether they converge to a
true distribution.

(i) Check the convergence (converging to 1) of Gelman and Rubin (1992)
shrinkage factor of the -2In(the joint posterior) values.

By use of the above tools, we may check the convergence of the Gibbs sequence
and determine appropriate value of ¢*. Once we check the convergence of the
Gibbs sampler and determine appropriate value of t*, as practiced by Besag,
York and Mollie (1991), a single long run chain of the Gibbs sampler is used to
get the Gibbs sample of size m, {aT)(1),...,a) (m)}. This method consists of
picking off every T'th value in a single long run of length N = mT + t*, where
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the number of ¢* is initial iterations that should be discarded to allow for “burn-
in”. The autocorrelation function of the long run chain gives the value of T' that
secures the independence of o(T)’s for the Gibbs sample.

The Gibbs sample can be used to compute the empirical distribution of the «
which converges to the actual marginal posterior h(a]Y) (cf. Casella and George,
1992). In particular, the empirical distribution of the a would have following
implications:

(1) the distribution corresponding to the most promising subsets of z;,..., 2,
will appear with the highest frequency, because it is just those values which have
largest probability under h(a|Y).

(ii) The low-frequency or zero-frequency values of o may simply be ignored,
because these correspond to the least promising models.

(iif) If no high-frequency values of o appeared in the empirical distribution,
then we would conclude that the data contain little information for discriminating
between models.

Thus, instead of estimating h(|Y"), one can simply identify potentially promis-
ing subsets of predictors from a tabulation of high-frequency values of .

4. NUMERICAL EXAMPLE

In thig section we illustrate the performance of the variable selection approach
on both artificial and a real data examples. The real data are presented in Col-
lett(1991) and are often used to illustrate techniques for selecting predictors.
The objectives in these examples are to demonstrate a convenient method for
the formulation of subjective priors, illustrate favorable performance of the pro-
cedure, and study the relation between prior and posterior distributions for the
coefficients of some predictor variables.

4.1. Artificial Data Example

This example treats problems involving p=>5 potential predictors of size n=50.
The predictors were obtained as independent standard normal variables z1,...,z5
iid ~ N(0,1), so that they were practically uncorrelated. The dependent variable
was generated according to the probit model (2.1):

py = Pr(Y;=1) = ®(Byzy + Psx5). (4.1)

Thus ,6 = (0, 0,0, /84’ 185)1'
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We applied the suggested variable selection method with the indifference prior
Plaj=1)=qj=¢q,0;=0,¢cj=c¢, for j=1,...,5and R = I;.

Different prior beliefs will, of course, lead to other choices for gj, o5 and ¢;. For
instance, it is thought that a certain predictor may not be enter the model at all,
the corresponding o; and p; would be smaller, while ¢; would be larger and their
values may be set employing the same kind of reasoning about marginal effects.
We considered various choices of the hyperparameters for the indifference priors.
For each oj, we considered the low and high settings, o; = .3 and o; = .5. For
each ¢; we considered the low and high settings, ¢; = 4 and ¢; = 9. These choices
provided substantial separation between the two mixture components in (2.4)
while still allowing for plausible values of §; when «; = 1. As a base probability
that each predictor is included in the model, we took g; = .5. To study the
relation between the prior and posterior distributions, we also considered g; = .2
and g; = .8. Thus we set up following twelve priors for the example.

Table 4.1: Twelve Indifference Priors

prior 1 2 3 4 5 6 7 3 9 10 11 12

q 02 02 02 02 05 05 05 05 08 08 08 08
a 03 03 05 05 03 03 05 05 03 03 05 05
¢ 4 9 4 9 4 9 4 9 4 9 4 9

For the probit model given in (4.1), corresponding Gibbs sampler was formu-
lated for each prior specified in Table 1, and then it was checked for convergence.

Using SAS/IML we generated an artificial data set of size 50 from the model
(4.1) with given values of 3;’s, and ran twelve parallel chains for the Gibbs sampler
(formulated by using each prior of Table 1). The parallel chains were obtained by
differing starting points overdispersed to provide good coverage of the posterior.
Twelve sets of starting points considered for each model were combinations of
following parameter values:

(i) Bj, i =1,...,5: mle of §;, mle + (s.d. of mle);

(ii) (e1,...,05): (0,...,0),(0,1,0,1,0), (1,0, 1,0, 1), (I, ..., 1).

We considered 48 ((4 different (B4, B5)) x 12 (priors)) sets of the twelve
parallel chains for the model (4.1). As convergence diagnostic tools, we used the
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trace and Gelman and Rubin shrink factor of -2 In(the joint posterior in (3.2))
obtained from each set of the parallel chains. Since they revealed almost the same
convergence diagnostic results, we present the result of only one set of the chains
of each models in Figure 4.1 and Figure 4.2. They were produced by selecting
plots option from the “CODA Output Analysis Menu” by Best et al. (1996).
The figures show that all twelve chains appear to settle to the same (or similar)
distribution within 1000 iterations. This is a clear indication that convergence
has been achieved within 1000 iterations for the Gibbs sampler.

Traces plus Gelman & Rubin Shrink Factors

Median = 1,01, 97.5% = 1.01

21]]0

T T
0 500 1000
Iteration

Figure 4.1: Graphical Summary of the Twelve Parallel Chains of the Gibbs Sam-
pler: Probit Model (51 = 4, B2 = 4) with Prior 4; Trace of the twelve chains (B1
to B12) and Gelman and Rubin shrinkage factor.

Using the same artificial data set of size n=>50, a Gibbs sample of m=1000
observations from the Gibbs sequence was obtained from each Gibbs sampler
having different prior.
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Traces plus Gelman & Rubin Shrink Factors

Median = 1.01, 97.5% = 1.02

o] 5’00 1000
lleration

Figure 4.2: Graphical Summary of the Twelve Parallel Chains of the Gibbs Sam-

pler: Probit Model (3 = ~2, (2 = —2) with Prior 4; Trace of the twelve chains

(B1 to B12) and Gelman and Rubin shrinkage factor.

The sampling scheme adopted here was to allow initial 1000 iterations for “burn-
in” and then to pick up every 10th observation until Gibbs sample of size m=1000
was collected. For each Gibbs sampling, we used the mle for 59, ag-o) =1 and

)\§0) =1,j7=1,...,5, as starting values. Table 2 displays respective three high-
frequency probit models corresponding to the frequencies of & = (ay,...,as)
that appeared for each prior with given (4, 3s). In each case of the priors, the
true model is included in the first three high-frequency values among 2° differ-
ent frequency values of a, suggesting reasonable robustness with respect to prior
specifications. Aside from the robustness, the table notes how the suggested vari-
able selection method successful in identifying several promising models rather
than the single best model. This feature is similar to the way in which stepwise
methods are used {0 narrow the scope of model selection.

4.2. Real Data Example

These data are presented in Collett (1991) and are often used to illustrate
techniques for selecting predictors of binary response regression models ( see
Collett (1991) for the logistic regression and Chib(1995) for the probit regression).
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The data are the presence of prostatic nodal involvement collected on 53 patients
with cancer of the prostate. They include a binary response variable Y that
takes the value 1 if cancer spread to the surrounding lymph nodes and value 0
otherwise. The objective is to explain the binary response with a constant term
and five variables: age of the patient in years at diagnosis (x1); logarithmic level
of serum acid phosphate (In(z3)); the result of an X-ray examination, coded 0
if negative and 1 if positive (z3); the size of the tumor, coded 0 if small and
1 if large (z4); and the pathological grade of the tumor, coded 0 if less serious
and 1 if more serious (z5). The probability of positive response can be explained
through a probit and a logistic link functions. If interactions and powers of
predictor variables are excluded, then there are 2° possible models that can be
fitted (including the constant term).

Table 4.2: High Frequency Probit Models and Relative Frequencies (%)

Prior (Bs=8s=-2) (Ba=ps=4) Prior (Ba=p=-2) (Ba=ps=4)

Model Freq. Model Freq. Model Freq. Model Freq.
1 T4Ts 22.5 T4Ts 37.1 7 T4 24.1 T4Ts 15.9
T4 18.5 Toax4xs 12.5 TATS 10.7 Ts5 13.1
razers 10.3 zazgzs 100 T1T4 6.3 T4 13.0
2 T4 36.2 T4Ls5 52.6 8 T4 30.2 T4 15.5
r4Ts 27.5 x4 12.9 T4Ts 9.0 Ts 14.3
3L 6.3 T3raxs 6.7 T4 5.1 T4Ts5 10.5
3 T4 22.0 L4Ts 16.7 9 T4Ts 25.2 T4Ts 30.1
I4T5 12.4 rs 12.3 Tq 170 T4 10.9
L34 6.5 T4 12.1 TsT4xy 104 TsTaTs 8.9
4 T4 32.0 T4 17.7 10 T4 23.5 T4T5 56.4
T4TH 8.8 Ts 17.4 T4Ts 10.6 T4 10.2
14 4.8 xX4Ts 9.9 a4 5.7 T1T4Ts 8.1
5 T4Ts 22.2 T4Zs 37.5 11 T4 23.5 425 15.1
T4 17.9 Xa2Xals 11.3 Xaxs 10.6 Is5 12.4
r3TaTs 9.9 xazaxs 10.3 r3x4 6.6 T4 10.4
6 T4 38.8 T4T5 48.9 12 T4 32.8 T4 16.7
T4Ts5 26.6 s 11.0 45 9.9 zs 16.1
£3T4 7.8 T4 7.2 T 5.9 TaTs 121

Instead of conventional variable selection method that searches the best fit-
ted model among 64 possible models, we have applied the suggested variable
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selection approach to select promising subsets of constant term with predictor
o1 and In(zg),...,2¢. For this example, we used the probit model to illustrate
the suggested stochastic variable search method. For the purpose of robustness,
we have considered various choices of hyperparameters o;, ¢; and R for the sec-
ond hierarchy of the model (2.5). For each ¢; we have considered the low and
high settings, ; = .3 and o; = .5. For each ¢; we have considered the low and
high settings, ¢; = 3 and ¢; = 6. These choices provided substantial separation
between the two mixture components in (2.4) while still allowing for plausible
values of 3; when a; = 1. Moreover, for the prior correlation choice, R = Ig and
Rx Q, Q = diag((X'X) 1)~ ¥3(X'X) *diag((X'X)~1)~1/2 are considered. The
eight priors considered are tabulated in Table 3. Here diag((X/X)™!) denotes a
diagonal matrix whose diagonal elements are those of (X'X)~!. When R = Ig, the
components of § are independent under (2.5). When R « @, the prior correla-
tion is identical to the design correlation, a generalization of the g prior of Zellner
(1986). These choices provided substantial separation between the two mixture
components in (2.4) while still allowing for plausible values of 8; when «a; = 1.
Finally, for the third hierarchy of the model, we set the prior 7(a) = (1/2)3, so
that we made the intercept C is always included in the final model by setting oy
=1 and ¢; = .5,j = 2,...,5, because we favored no particular a; except for a;.

For the Gibbs sampler constructed for the probit model with each of the priors
in Table 3, convergence diagnostic checking was done by the same way as in the
previous artificial data example. The checking showed that 1000 iterations of the
Gibbs sampling algorithm seemed to achieved the convergence.

Table 3 displays four high-frequency probit models of each size obtained from
each of eight combinations of the hyperparameters. They were obtained from
Gibbs samples of each size m = 1000. After the initial 1000 iterations, every 10th
output from 2001 through 12001 iterations was collected to construct each Gibbs
sample of size m = 1000. The table notes that, as in the previous example, the
suggested variable selection method safely includes best fitting model (cf. Chib
1995) regardless of the choice of the prior specification. As expected the high
setting of o; tends to select smaller model than the low setting of ; does. Certain
variables, such as x5, are included more often under the low setting than under
the high setting. It is also interesting that although there are some overlappings in
models selected using R = Ig and using R o (), there is a pronounced difference.
R = I§, lessening posterior correlations, tends to select smaller model than R o< @
does. Certain variables, such as zs, are included more often under R o« @ than
under R = I;.
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Table 4.3: Four High Frequency Probit Regression Models(C= Constant term)
Case: R=1g Case: Rox

(0j,¢;) Selected Probit Models  prop.(%) Selected Probit Models  prop.(%)

(0.3,3) C+ln(z2) + 23+ 24 15.3 C + In(z2) + 23 + z4 17.5
C+1n(zs) +z3+za+2x5 109 C+n(ze) +23+za+xs 115
C+ I3+ &4 8.7 C+ 1]1(.’);‘2) + T3 8.5
C+ 111(.’122) + 3 7.6 CALxs+ x4 8.0
(0.3, 6) C+ 11’1(.'1:2) +x3+ 24 18.1 C+ 111(3:2) + 3+ x4 19.6
C +In(z2) + x3 12.7 C+1In(zz:) +z3+ T4+ a5 105
C + 123+ 14 9.3 C+ 111(:1:2) + x3 10.0
C+ln(zs) +z3+2g+25 74 C+zz+a4 8.1
(0.5,3) C+In(z2)+z3 8.7 C +1n(x2) + o3 + x4 12.0
C +1In(x2) + 23+ 24 8.3 C +In(z2) + 3 9.1
C+zxs 7.0 C+ w3+ x4 7.3
C 423+ 34 6.4 C ln(.’ljz) + 3+ x4+ 25 6.8
(0.5,6) C+z3 11.1 C+z3 14.1
C +In(z2) + xa 10.9 C +1n(z2) + 23 10.2
C + In(z2) 8.9 CHaxst+za 9.9
C+ ]]J(.’Eg) + T3+ 14 7.3 C+ 111(1:2) + T34+ x4 79

The choice of a single best model at this point could proceed by applying
standard model selection criteria, such as AIC, the deviance criterion, and the
marginal likelihood criterion (see Chib 1995), to the more manageable selected
subsets, i.e. selected high-frequency models.

5. CONCLUDING REMARKS

This article has developed and illustrated a Bayesian approach to narrow the
scope of possible models in the variable selection for a probit regression model.
Though the suggested approach would not directly lead to a single best fitting
model, it is demonstrated as a way to save the overwhelming job of comparing
all the 2P possible submodels for the probit regression model with p predictor
variables. Thus, as an alternative to usual optimal subset selection procedure
(involving the overwhelming comparisons of all 27 possible subset models), a
two-stage variable selection procedure can be constructed: First, select m << 2P
promising subset models via the suggested approach. In the second stage, choose
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a best fitting model by means of usual variable selection criteria such as AIC,
BIC, the deviance criterion (Collett 1991) and the marginal likelihood by Chib
(1995). For the full Bayesian two-stage procedure, we may adopt the marginal
likelihood criterion at the second stage.

The suggested approach relies on the output of the Gibbs sampling algorithm
and demonstrates good performances in a couple of examples. The algorithm was
applied to reformulated probit regression setup constructed in a hierarchical trun-
cated normal mixture model by introducing hyperparameters that will be used to
identify subset choices. Among the hyperparameters, ¢; and o, j = 1,...,p were
assumed to be known even though values of them were not readily available. We
gave some useful guidelines to select them. The illustrated examples showed that
the approach was robust against the choice of the parameters. However, to avoid
the subjective choice of the parameters, we may assume vague priors for the pa-
rameters in the hierarchical model setting. This will lead to a more complicated
algorithm, because the full conditional distributions of ¢; and ¢; will not be of
closed forms. The Metropolis-Hastings algorithm (cf. Smith and Roberts 1993)
may be used to construct a Markov chains for ¢; and ;. The study pertaining
to the performance of the suggested approach obtained by the vague priors is no
less important and will be left as a future study of interest.

REFERENCES

Albert, J. H. and Chib, S. (1993). “Bayesian analysis of binary and polychoto-
mous response data,” Journal of the American Statististical Association,
88, 669-679.

Bernardo, J. M. and Smith, A. F. M. (1994). Bayesian theory, Wiley, New York.

Besag, J. E., York, J., and Mollie (1991). “Bayesian image restoration, with two
applications in spatial statistics,” Annals of Institute of Statistical Mathe-
matics, 43, 1-59.

Best, N., Cowles, M. K., and Vines, K. (1996). CODA; Convergence diagnosis
and output analysis software for Gibbs sampling output version .80, MRC
Biostatistics Unit, Cambridge.

Casella, G. and George, E. 1. (1992). “Explaining the Gibbs sampler,” American
Statistician, 46, 167-174,



182 Hea-Jung Kim

Chib, S. (1995). “Marginal likelihood from the Gibbs output,” Journal of the
American Statististical Association, 90, 1313-1321.

Collett, D. (1991). Modelling binary date, Chapman and Hall, New York.

Cowles, M. K. and Carlin, B. P. (1996). “Markov chain Monte Carlo convergence
diagnostics: a comparative review,” Journal of the American Statististical
Association, 91, 883-904.

Devroye, L. (1986). Non-uniform random generation, Springer Verlag, New
York.

Gelman, A. and Rubin, D. B. (1992). “Inference from iterative simulation using
multiple sequences (with discussion),” Statistical Science, 7, 457-511.

George, E. I. and McCulloch, R. E. (1993). “Variable selection via Gibbs sam-
pling,” Journal of the American Statististical Association, 88, 881-889.

Mitchell, T. J. and Beauchamp, J. J. (1988). “Bayesian variable selection in
linear regression (with discussion),” Journal of the American Statististical
Association, 83, 1023-1036.

Nelder, J. A. and McCullagh, P. (1989). Generalized linear models, Capman
and Hall, New York.

Smith, A. F. M. and Roberts, G. O. (1993). “Bayesian computation via the
Gibbs sampler and related Markov chain Monte Carlo methods,” Journal
of the Royal Statistical Society, B, 55, 3-23.

Zellner, A. (1971). An Introduction to Bayesian Inference in Econometrics,
Wiley, New York.

Zellner, A. (1986). “On assessing prior distributions and Bayesian Regression
Analysis with g prior distributions,” in Bayesian Inference and Decision
Techniques, eds. P. Goel and A. Zellner, New York: Elsevier, 233-243.



