• Title/Summary/Keyword: Batch size

Search Result 433, Processing Time 0.02 seconds

Batch Sizing Heuristic for Batch Processing Workstations in Semiconductor Manufacturing (반도체 생산 배취공정에서의 배취 크기의 결정)

  • Chun, Kil-Woong;Hong, Yu-Shin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.2
    • /
    • pp.231-245
    • /
    • 1996
  • Semiconductor manufacturing line includes several batch processes which are to be controlled effectively to enhance the productivity of the line. The key problem in batch processes is a dynamic batch sizing problem which determines number of lots processed simultaneously in a single botch. The batch sizing problem in semiconductor manufacturing has to consider delay of lots, setup cost of the process, machine utilization and so on. However, an optimal solution cannot be attainable due to dynamic arrival pattern of lots, and difficulties in forecasting future arrival times of lots of the process. This paper proposes an efficient batch sizing heuristic, which considers delay cost, setup cost, and effect of the forecast errors in determining the botch size dynamically. Extensive numerical experiments through simulation are carried out to investigate the effectiveness of the proposed heuristic in four key performance criteria: average delay, variance of delay, overage lot size and total cost. The results show that the proposed heuristic works effectively and efficiently.

  • PDF

The order Picking Time of the S/R Vehicle in a Batch Picking Warehouse System (배치 인출 창고시스템에서 저장/인출 차량의 주문 인출 소요시간)

  • Chang, Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.1-10
    • /
    • 2011
  • This paper addresses the analysis of the travel distance and order picking time of the vehicle in a aisle when items are picked by the batch in a warehouse system. Batching is to combine several orders in a single tour of the storage/retrieval machine. An advantage of batching is that the length of a tour for a batch of orders is shorter than the sum of the individual orders' tour lengths. The average travel distance and order picking time when a batch is picked in a aisle of the warehouse systems are analyzed for the batch size. And when the vehicle is idle, the dwell point of the vehicle to minimize to the response distance is analyzed. As the batch size is increased, average order picking time per item is decreased. The problem is analyzed and a numerical example is showed to explain the problem.

A study on Lot sizing Technique for Multi-product Small batch production system : A case study (다품종 소량생산시스템하에서의 로트크기 결정기법에 관한 사례연구)

  • 송수정;김태호;강경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.17 no.32
    • /
    • pp.177-186
    • /
    • 1994
  • Economic Lot size decision is studied on this thesis foe the muti-product small batch production system. Even though economic lot size decision has been studied for the MRP system. this could be applied at the industry under the multi-product small batch production system because of very complicate and manager's lack of understand. Therefore, this technique is applied at the industry in order to minimize ordering cosy based on optimal quantity and period, and holding cost according to optimize inventory level under the muti-product small batch production system. After that, lot size decision technique is compared with lot size decision technique which has been used for analyzing and emphasizing productivity

  • PDF

An Algorithm for Scheduling Repetitive Projects with Resource Continuity and Different Batch Sizes

  • Shim, Euysup;Yoo, Wi Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.6
    • /
    • pp.565-578
    • /
    • 2013
  • Batch production is common in repetitive construction projects, and it is not unusual for different batch sizes to be used by contractors in one project. While several scheduling methods, such as the Linear Scheduling Method (LSM) and the Repetitive Scheduling Method (RSM) have been proposed and used, no mathematical method for repetitive construction projects has been developed, and it is difficult to consider different batch sizes with the existing methods. An original mathematical algorithm for scheduling repetitive projects with different batch sizes is proposed in this study. This algorithm is illustrated with assumptions of resource continuity and single path in a project and introduces new terms, control batch and critical batch. The algorithm logics and mathematical equations are validated by comparison with the outcomes from a graphical scheduling approach through a simple and practical hypothetic project. As a result, it is expected that the proposed algorithm can be easily adapted and extended to computer software for scheduling, and can be a starting point for research on batch size management in repetitive construction projects.

Batch Size Distribution in Input Flow to Queues with Finite Buffer

  • Kim, Che-Soong;Kim, Ji-Seung
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.271-275
    • /
    • 2005
  • Queueing models are good models for fragments of communication systems and networks, so their investigation is interesting for theory and applications. Theses queues may play an important role for the validation of different decomposition algorithms designed for investigating more general queueing networks. So, in this paper we illustrate that the batch size distribution affects the loss probability, which is the main performance measure of a finite buffer queues.

  • PDF

Batch Size Distribution in Input Flow to Queues with Finite Buffer Affects the Loss Probability

  • Kim Che-Soong;Oh Young-Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • Queueing models are good models for fragments of communication systems and networks, so their investigation is interesting for theory and applications. Theses queues may play an important role for the validation of different decomposition algorithms designed for investigating more general queueing networks. So, in this paper we illustrate that the batch size distribution affects the loss probability, which is the main performance measure of a finite buffer queues.

  • PDF

3D Cross-Modal Retrieval Using Noisy Center Loss and SimSiam for Small Batch Training

  • Yeon-Seung Choo;Boeun Kim;Hyun-Sik Kim;Yong-Suk Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.670-684
    • /
    • 2024
  • 3D Cross-Modal Retrieval (3DCMR) is a task that retrieves 3D objects regardless of modalities, such as images, meshes, and point clouds. One of the most prominent methods used for 3DCMR is the Cross-Modal Center Loss Function (CLF) which applies the conventional center loss strategy for 3D cross-modal search and retrieval. Since CLF is based on center loss, the center features in CLF are also susceptible to subtle changes in hyperparameters and external inferences. For instance, performance degradation is observed when the batch size is too small. Furthermore, the Mean Squared Error (MSE) used in CLF is unable to adapt to changes in batch size and is vulnerable to data variations that occur during actual inference due to the use of simple Euclidean distance between multi-modal features. To address the problems that arise from small batch training, we propose a Noisy Center Loss (NCL) method to estimate the optimal center features. In addition, we apply the simple Siamese representation learning method (SimSiam) during optimal center feature estimation to compare projected features, making the proposed method robust to changes in batch size and variations in data. As a result, the proposed approach demonstrates improved performance in ModelNet40 dataset compared to the conventional methods.

A Study on UBM Method Detecting Mean Shift in Autocorrelated Process Control

  • Jun, Sang-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.187-194
    • /
    • 2020
  • In today's process-oriented industries, such as semiconductor and petrochemical processes, autocorrelation exists between observed data. As a management method for the process where autocorrelation exists, a method of using the observations is to construct a batch so that the batch mean approaches to independence, or to apply the EWMA (Exponentially Weighted Moving Average) statistic of the observed value to the EWMA control chart. In this paper, we propose a method to determine the batch size of UBM (Unweighted Batch Mean), which is commonly used as a management method for observations, and a method to determine the optimal batch size based on ARL (Average Run Length) We propose a method to estimate the standard deviation of the process. We propose an improved control chart for processes in which autocorrelation exists.

Analysis of the M/Gb/1 Queue by the Arrival Time Approach (도착시점방법에 의한 M/Gb/1 대기행렬의 분석)

  • Chae, Kyung-Chul;Chang, Seok-Ho;Lee, Ho-Woo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.36-43
    • /
    • 2002
  • We analyze bulk service $M/G^{b}/1$ queues using the arrival time approach of Chae et al. (2001). As a result, the decomposition property of the M/G/1 queue with generalized vacations is extended to the $M/G^{b}/1$ queue in which the batch size is exactly a constant b. We also demonstrate that the arrival time approach is useful for relating the time-average queue length PGF to that of the departure time, both for the $M/G^{b}/1$queue in which the batch size is as big as possible but up to the maximum of constant b. The case that the batch size is a random variable is also briefly mentioned.