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Batch Size Distribution in Input
Flow to Queues with Finite Buffer
Affects the Loss Probability?
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Abstract Queueing models are good models for fragments of communication systems and
networks, so their investigation is interesting for theory and applications. Theses queues may
play an important role for the validation of different decomposition algorithms designed for
investigating more general queueing networks. So, in this paper we illustrate that the batch
size distribution affects the loss probability, which is the main performance measure of a

finite buffer queues.
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1. Introduction

Queueing models with a finite buffer are
useful in design of many computers and
telecommunication systems. So, they got a lot
of attention of researchers. Extensive work in
this direction was done by research group
leaded by P.P. Bocharov. A very general
model of the BMAP/SM/I/N type was
investigated in [3]. Here the BMAP stands
for the Batch Markovian Arrival Process, for
description and more details see [1], [5], SM
service process, see e.g.[6], assumes that the
successive service times can be dependent.

In [3], the BMAP/SM/1/N model was
considered in detail.
The numerically stable algorithms for

calculating the embedded and arbitrary time
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stationary distributions ‘of the queue length
are presented and the loss probability is
In paper [4], this research is
supplemented by of another
customer admission disciplines.

These disciplines define customer’s
admission in situation when the buffer is not
full at a batch arrival epoch, but the whole
batch cannot be put into the buffer. In [3],
the  partial were
considered. This discipline suggests that a
part of a batch corresponding to the available
buffer space is accepted into the system
while the rest leaves the system forever. In
[4], the complete admission and complete
rejection disciplines are dealt with. The
former one si;ggests that the whole batch is
admitted to enter the system. The latter one
assumes that the wholé batch is rejected.

In the paper [7], the BMAP/SM/1/N
models with partial admission and complete

calculated.
consideration

admission  disciplines
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rejection disciplines are considered. Additionally,
vacations and setup times are . taken into an

account. Based on their numerical .experience,

the authors by [7] assert that only the mean -

batch size, but not the batch size distribution
affects essentially ‘ performance measures of

the system. So they conclude that the
contribution of the accurate batch size
distribution is trivial to the

system’s
performance. ' ‘
Our own experience contradicts to this
assertion. The aim of this paper is to
illustrate that the batch size distribution affect
which is the main

the loss probability,

performance measure of a finite buffer queue. :

2. Mathematical Model

We consider a single queue with a finite
buffer of capacity N. The customers arrive in
the BMAP. The BMAP is described in the
following way. Continuous time Markov chain

with Vi»t20 5 finite space {0,1"" W },
which is called as the directing process of the
BMAP, is defined as follows. The sojourn
time of the chain in state has exponential

distribution with parameter A, . After this
time expires, the chain makes a transition

into some state v' and with probability

P (v;v') this transition is accompahied by
generation of a batch consisting of &
k>0, It is

customers, assumed that

Po(V,v)=0 and k=0 v'=0 for

any V=0,  Lucantoni [5] offered to keep
information about the transitions' of the

v,,t20 D, k>0

process in matrices

having entries (Dk )v,V’ defined as follows:

(DO)V,V == z’v , .
(Do)y==4, po(v,v)v'#v

(Dk.)yv,’v' = A, pr (V) k21, v, v'= 0,

In turn, information about the matrices

Dy k20 can be kept by means of the

matrix generating function

D()=Y D,z*, |z|<1 . .
) k2=0 ezt Il . The matrix P(1) is
v, 620

the generator of the Markov chain

Row vector & of stationary distribution of

v,,t=0

the chain is calculated as the

unique solution to the system éD(1)=0
6¢ =1 Here € is the column vector

consisting of one’s, 0 is the row vector

'consisting of zeroes. Average intensity 4

(fundamental rate) of the BMAP is calculated

as A=60D'(1)e , average intensity f{g of

groups is calculated by Ag=60(-Dy)e
The BMAP is very -popular in literature
because it takes into account possible
correlation of successive inter arrival times
what is important from the point view of
modeling. the modern

networks. Following to [7], we assume that

telecommunication

the service process is recurrent. Service time
is characterized by the distribution function

b, = (B (1)
B(t) with the finite mean J; .

3. Analysis of the Model

Calculation of the stationary distribution of

a number of customers in the system

i,,620,i,=0,N +1 can be implemented in

several ways. Probably, the sifnpler way is to
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apply the techniques of imbedded Markov
chains. Consider behavior of the queueing

model at the service completion epochs
Lok 21 Two-dimensional process
{itk+0 ’vrk}, k 21, it,,+0=05N’
Vi, =0,% is the Markov chain.

Denote ”(i’v)zl,é}}} P, =i, v, =v}, i=0,N

v=0,W and 7. =[r@,0), -, 2G,W)]

In [3], [4], stable algorithms for calculation

of vectors %320 gre elaborated. Having
these vectors been computed, the arbitrary
time distribution of the

{i,,v},t20 i, =0,N+1 v, =0, j

process

calculated using the Markov renewal process
theory [2].
}n

Loss probability wss of arbitrary customer is

calculated by

P

loss

=1—-(Ar)"!

where A4 is the fundamental rate of the
BMAP and 7 is the average inter departure
time.

For different admission disciplines, the value
of 7 is calculated as follows:

t=b +7,(-D,)'e

for partial admission and complete admission
disciplines, '

‘T =b, +7ro(—1)(Do+ i Dk)é

k=N+2

for complete rejection discipline.

4. Impact of the. Batch Size Distribution

One of the main conclusions of the paper
[71 is that, under the fixed average batch
size, say K , loss probability is -almost
insensitive with respect to the distribution of
a batch size.

Incorrectness  of . this  conclusion is
intuitively clear in case when the average
batch size distribution K

buffer capacity N . So, to illustrate the effect
of the batch size distribution we do not
consider this obvious case and admit the

is close to the

same assumption as was done in [7], namely,

we suppose that N =10K , so the values

K and N are quite different. Aiming to be
more close to the input data of the paper [7],
we also assume that the arrival process is
the BIPP. This process having fundamental
rate 4 =0.452817

Coor = 0, and squared variation coefficient

correlation coefficient

Cwe =5 is constructed based on the IPP-
Interrupted Poisson Process defined by the
following matrices:

_ | —1.01884 0.113204
°" 10.113204 - 0.113204 ,
1 0.905634 0
b 0 0
. Concrete mechanisms for constructing

different flows having the same mean batch
size value but different batch size distribution
will be explained below. We assume that
service time is constant, i.e., it has degenerate
distribution. To illustrate the influence of the
traffic intensity 2 (load of the system), we
take three different values T of the service
time. These values of T are taken as 1.10420,
1.76672, 2.65008;

the corresponding traffic
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intensities £ are equal to 0.5, 0.8, and 1.2.

To show that the batch size distribution
influence the value of the loss probability, we
consider five different BIPPs having the
same mean batch size K , but different batch
size distribution.

1 the BIPP,
which has: legend {K}on the following

corresponding to the. curve,

Figures, has a constant batch size K

1 the BIPP,
which has legend {K -1,K +1} , has a
or K +1 with

corresponding to the curve,

constant batch size K -1
probability 0.5.

1 the BIPP, corresponding to the curve,
which has {L2K -1} has a
constant batch size 1 or 2K -1 with
probability 0.5.

legend

1 the BIPP, corresponding to the curve,
{1,3K -1} has a
size. 1 or 3K -1 with

(2K -1)/(3K - 2) and

which has v legend
constant batch
probabilities

(K -1)/(3K.-2)

correspondingly;

1 the BIPP, corresponding to the curve,
which has legend geometric, has a restricted
geometric distribution. Thus, probability that

the batch size is equal to % is equal to
A=) /A=Y k=M '

M is the maximal batch size and ‘7 is some

where

parameter.

Table 1. M and 7 for different values of the

mean batch ‘size K

Maximal Batch p
K Size M
2 4 0.65729810613837603
3 6 0.83976857486597889
4 9 0.85654299454521213
5 12 0.87721191050789504
6 15 0.89393918635698788
"7 19 0.89881856557451623
8 25 0.89841686355905215
9 34 0.89956012034162147

Figures 1-3 illustrate dependence of the

loss - probability P,y on the mean batch size

K for different values of the load and the
BIPPs presented above.

One should see that the
distribution essentially influences the value of
the loss probability. Note, that we included
the curve corresponding to the BIPP, which

batch size

has legend {1,3K —1} only on one figure
between Figures 1-3 and present the curves
corresponding to this BIPP separately on
Figure 5 because loss probability in this case
is much higher than in other cases and the
difference between these is mnot shown
properly. Mention, that if we allow having

much essential difference in a batch size, eg.,
{1,4K -1}, {1,5K -1} etc, the difference
in.loss probability essentially increases.
Situations when the difference in a batch
size is essential are not rare in practical
situations. For .example, it takes place when
some customers correspond to short network
control message while the others are long
messages sent by users. Thus numerical
examples confirm the conclusion that account
of a batch size distribution is essential in
analysis. ‘
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