• Title/Summary/Keyword: Back propagation neural network

Search Result 1,073, Processing Time 0.027 seconds

A Study on the SVC System Stabilization Using a Neural Network (신경회로망을 이용한 SVC 계통의 안정화에 관한 연구)

  • 정형환;허동렬;김상효
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.3
    • /
    • pp.49-58
    • /
    • 2000
  • This paper deals with a systematic approach to neural network controller design for static VAR compensator (SVC) using a learning algorithm of error back propagation that accepts error and change of error as inputs, the momentum learning technique is used for reduction of learning time, to improve system stability. A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage.TO verify the robustness of the proposed method, we considered the dynamic response of generator rotor angle deviation, angular velocity deviation and generator terminal voltage by applying a power fluctuation and rotor angle fluctuation in initial point when heavy load and normal load. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

Front Classification using Back Propagation Algorithm (오류 역전파 알고리즘을 이용한 영문자의 폰트 분류 방법에 관한 연구)

  • Jung Minchul
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.65-77
    • /
    • 2004
  • This paper presents a priori and the local font classification method. The font classification uses ascenders, descenders, and serifs extracted from a word image. The gradient features of those sub-images are extracted, and used as an input to a neural network classifier to produce font classification results. The font classification determines 2 font styles (upright or slant), 3 font groups (serif sans-serif or typewriter), and 7-font names (Postscript fonts such as Avant Garde, Helvetica, Bookman, New Century Schoolbook, Palatine, Times, and Courier). The proposed a priori and local font classification method allows an OCR system consisting of various font-specific character segmentation tools and various mono-font character recognizers. Experiments have shown font classification accuracies reach high performance levels of about 95.4 percent even with severely touching characters. The technique developed for tile selected 7 fonts in this paper can be applied to any other fonts.

  • PDF

Feature Extraction of Simulated fault Signals in Stator Windings of a High Voltage Motor and Classification of Faulty Signals

  • Park, Jae-Jun;Jang, In-Bum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.10
    • /
    • pp.965-975
    • /
    • 2005
  • In the case of the fault in stator windings of a high voltage motor. it facilitates certain destructive characteristics in insulations. This will result in a decreased reliability in power supplies and will prevent the generation of electricity, which will result in huge economic losses. This study simulates motor windings using normal windings and four faulty windings for an actual fault in stator winding of a high voltage motor. The partial discharge signals produced in each faulty winding were measured using an 80 PF epoxy/mica coupler sensor. In order to quantified signal waves its a way of feature extraction for each faulty signal, the signal wave of winding was quantified to measure the degree of skewness shape and kurtosis, which are both types of statistical parameters, using a discrete wavelet transformation method for each faulty type. Wave types present different types lot each faulty type, and the skewness and kurtosis also present different quantified values. The result of feature extraction was used as a preprocessing stage to identify a certain fault in stater windings. It is evident that the type of faulty signals can be classified from the test results using faulty signals that were randomly selected from the signal, which was not applied in the training after the training and learning period, by applying it to a back-propagation algorithm due to the supervising and learning method in a neural network in order to classify the faulty type. This becomes an important basis for studying diagnosis methods using the classification of faulty signals with a feature extraction algorithm, which can diagnose the fault of stator windings in the future.

Face Recognition System for Multimedia Application (멀티미디어 응용을 위한 얼굴 인식시스템)

  • Park, Sang-Gyou;Seong, Hyeon-Kyeong;Han, Young-Hwan
    • Journal of IKEEE
    • /
    • v.6 no.2 s.11
    • /
    • pp.152-160
    • /
    • 2002
  • This paper is the realization of the face recognition system for multimedia application. This system is focused on the design concerning the improvement of recognition rate and the reduction of processing time for face recognition. The non-modificated application of typical RGB color system enables the reduction of time required for color system transform. The neural network and the application of algorithm using face characteristic improves the recognition rate. After mosaicking an image, a face-color block has been selected through the color analysis of mosaic block. The characteristic of the face removes the mis-checked face-color candidate block. Finally, from the face color block, four special values are obtained. These values are processed to the neural network using the back propagation algorithm. The output values are the touchstone to decide the genuineness of face field. The realized system showed 90% of face recognition rate with less than 0.1 second of processing time. This result can be understood as sufficient processing time and recognition rate to find out the face block for multimedia application in dynamic image.

  • PDF

Adaptive Blocking Artifacts Reduction in Block-Coded Images Using Block Classification and MLP (블록 분류와 MLP를 이용한 블록 부호화 영상에서의 적응적 블록화 현상 제거)

  • Kwon, Kee-Koo;Kim, Byung-Ju;Lee, Suk-Hwan;Lee, Jong-Won;Kwon, Seong-Geun;Lee, Kuhn-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.399-407
    • /
    • 2002
  • In this paper, a novel algorithm is proposed to reduce the blocking artifacts of block-based coded images by using block classification and MLP. In the proposed algorithm, we classify the block into four classes based on a characteristic of DCT coefficients. And then, according to the class information of neighborhood block, adaptive neural network filter is performed in horizontal and vertical block boundary. That is, for smooth region, horizontal edge region, vertical edge region, and complex region, we use a different two-layer neural network filter to remove blocking artifacts. Experimental results show that the proposed algorithm gives better results than the conventional algorithms both subjectively and objectively.

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계)

  • Seo Sam-Jun;Kim Dongwon;Park Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. However, among the input/output variables which arc not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by the introduction of a neuro-fuzzy controller using relative gain matrix. This proposed neuro-fuzzy controller automatically adjusts the mutual coupling weight between variables using a neural network which is realized by back-propagation algorithm. The good performance of the proposed nero-fuzzy controller is verified through computer simulations on 200MW boiler systems.

Application of flat DMT and ANN for reliable estimation of undrained shear strength of Korean soft clay (국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용)

  • Byeon, Wi-Yong;Kim, Young-Sang;Lee, Seung-Rae;Jeong, Eun-Taeg
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.154-161
    • /
    • 2004
  • The flat dilatometer test(DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indicesmaterial index($I_p$), horizontal stres index($K_p$), and dilatometer modulus($E_p$) and the undrained shear strength is estimated only by using the horizontal stress index($K_D$). In this paper, an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0,\;p_1,\;p_2,\;{\sigma}'_v_0$, and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

  • PDF

A Comparative Study between BPNN and RNN on the Settlement Prediction during Soft Ground Embankment (연약지반상의 성토시 침하예측에 대한 BPNN과 RNN의 비교 연구)

  • Kim, Dong-Sik;Chae, Young-Su;Kim, Young-Su;Kim, Hyun-Dong;Kim, Seon Hyung
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.1
    • /
    • pp.37-53
    • /
    • 2007
  • Various difficult problems occur due to insufficient bearing capacity or excessive settlements when constructing roads or large complexes. Accurate predictions on the final settlement and consolidation time can help in choosing the ground improvement method and thus enables to save time and expense of the whole project. Asaoka's method is probably the most frequently used for settlement prediction which are based on Terzaghi's one dimensional consolidation theory. Empirical formulae such as Hyperbolic method and Hoshino's method are also often used. However, it is known that the settlement predicted by these methods do not match with the actual settlements. Furthermore these methods cannot be used at design stage when there is no measured data. To find an elaborate method in predicting settlement in embankments using various test results and actual settlement data from domestic sites, Back-Propagation Neural Network(BPNN) and Recurrent Neural Network(RNN) were employed and the most suitable model structures were obtained. Predicted settlement values by the developed models were compared with the measured values as well as numerical analysis results. Analysis of the results showed that RNN yielded more compatible predictions with actual data than BPNN and predictions using cone penetration resistance were closer to actual data than predictions using SPT results. Also, it was found that the developed method were very competitive with the numerical analysis considering the number of input data, complexity and effort in modelling. It is believed that RNN using cone penetration test results can make a highly efficient tool in predicting settlements if enough field data can be obtained.

  • PDF

EEG Analysis for Cognitive Mental Tasks Decision (인지적 정신과제 판정을 위한 EEG해석)

  • Kim, Min-Soo;Seo, Hee-Don
    • Journal of Sensor Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.289-297
    • /
    • 2003
  • In this paper, we propose accurate classification method of an EEG signals during a mental tasks. In the experimental task, subjects achieved through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and select a key. To recognize the subjects' selection time, we analyzed with 4 types feature from the filtered brain waves at frequency bands of $\alpha$, $\beta$, $\theta$, $\gamma$ waves. From the analysed features, we construct specific rules for each subject meta rules including common factors in all subjects. In this system, the architecture of the neural network is a three layered feedforward networks with one hidden layer which implements the error back propagation learning algorithm. Applying the algorithms to 4 subjects show 87% classification success rates. In this paper, the proposed detection method can be a basic technology for brain-computer-interface by combining with discrimination methods.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.