• Title/Summary/Keyword: B-convexity

Search Result 37, Processing Time 0.02 seconds

BANACH SPACE WITH PROPERTY (β) WHICH CANNOT BE RENORMED TO BE B-CONVEX

  • Cho, Kyugeun;Lee, Chongsung
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.161-168
    • /
    • 2006
  • In this paper, we study property (${\beta}$) and B-convexity in reflexive Banach spaces. It is shown that k-uniform convexity implies B-convexity and property (${\beta}$). We also show that there is a Banach space with property (${\beta}$) which cannot be equivalently renormed to be B-convex.

  • PDF

A note on convexity on linear vector space

  • Hong, Suk-Kang
    • Journal of the Korean Statistical Society
    • /
    • v.1 no.1
    • /
    • pp.18-24
    • /
    • 1973
  • Study on convexity has been improved in many statistical fields, such as linear programming, stochastic inverntory problems and decision theory. In proof of main theorem in Section 3, M. Loeve already proved this theorem with the $r$-th absolute moments on page 160 in [1]. Main consideration is given to prove this theorem using convex theorems with the generalized $t$-th mean when some convex properties hold on a real linear vector space $R_N$, which satisfies all properties of finite dimensional Hilbert space. Throughout this paper $\b{x}_j, \b{y}_j$ where $j = 1,2,......,k,.....,N$, denotes the vectors on $R_N$, and $C_N$ also denotes a subspace of $R_N$.

  • PDF

Radii of Starlikeness and Convexity for Analytic Functions with Fixed Second Coefficient Satisfying Certain Coefficient Inequalities

  • MENDIRATTA, RAJNI;NAGPAL, SUMIT;RAVICHANDRAN, V.
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.395-410
    • /
    • 2015
  • For functions $f(z)=z+a_2z^2+a_3z^3+{\cdots}$ with ${\mid}a_2{\mid}=2b$, $b{\geq}0$, sharp radii of starlikeness of order ${\alpha}(0{\leq}{\alpha}<1)$, convexity of order ${\alpha}(0{\leq}{\alpha}<1)$, parabolic starlikeness and uniform convexity are derived when ${\mid}a_n{\mid}{\leq}M/n^2$ or ${\mid}a_n{\mid}{\leq}Mn^2$ (M>0). Radii constants in other instances are also obtained.

GEOMETRIC PROPERTIES ON (j, k)-SYMMETRIC FUNCTIONS RELATED TO STARLIKE AND CONVEX FUNCTION

  • Gochhayat, Priyabrat;Prajapati, Anuja
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.455-472
    • /
    • 2022
  • For j = 0, 1, 2,…, k - 1; k ≥ 2; and - 1 ≤ B < A ≤ 1, we have introduced the functions classes denoted by ST[j,k](A, B) and K[j,k](A, B), respectively, called the generalized (j, k)-symmetric starlike and convex functions. We first proved the sharp bounds on |f(z)| and |f'(z)|. Various radii related problems, such as radius of (j, k)-symmetric starlikeness, convexity, strongly starlikeness and parabolic starlikeness are determined. The quantity |a23 - a5|, which provide the initial bound on Zalcman functional is obtained for the functions in the family ST[j,k]. Furthermore, the sharp pre-Schwarzian norm is also established for the case when f is a member of K[j,k](α) for all 0 ≤ α < 1.

BOUNDS FOR RADII OF CONVEXITY OF SOME q-BESSEL FUNCTIONS

  • Aktas, Ibrahim;Orhan, Halit
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.355-369
    • /
    • 2020
  • In the present investigation, by applying two different normalizations of the Jackson's second and third q-Bessel functions tight lower and upper bounds for the radii of convexity of the same functions are obtained. In addition, it was shown that these radii obtained are solutions of some transcendental equations. The known Euler-Rayleigh inequalities are intensively used in the proof of main results. Also, the Laguerre-Pólya class of real entire functions plays an important role in this work.

NORMAL STRUCTURE, FIXED POINTS AND MODULUS OF n-DIMENSIONAL U-CONVEXITY IN BANACH SPACES X AND X*

  • Gao, Ji
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.433-442
    • /
    • 2021
  • Let X and X* be a Banach space and its dual, respectively, and let B(X) and S(X) be the unit ball and unit sphere of X, respectively. In this paper, we study the relation between Modulus of n-dimensional U-convexity in X* and normal structure in X. Some new results about fixed points of nonexpansive mapping are obtained, and some existing results are improved. Among other results, we proved: if X is a Banach space with $U^n_{X^*}(n+1)>1-{\frac{1}{n+1}}$ where n ∈ ℕ, then X has weak normal structure.

A FIXED POINT THEOREM REVISITED

  • Kirk, W.A.;Kang, B.G.
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.285-291
    • /
    • 1997
  • In this paper, we obtain an abstract formulation of a fixed point theorem for nonexpansive mappings. Our theorem is a non-metric version of Kirk's original theorem.

  • PDF

MONOTONICITY PROPERTIES OF THE BESSEL-STRUVE KERNEL

  • Baricz, Arpad;Mondal, Saiful R.;Swaminathan, Anbhu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1845-1856
    • /
    • 2016
  • In this paper our aim is to study the classical Bessel-Struve kernel. Monotonicity and log-convexity properties for the Bessel-Struve kernel, and the ratio of the Bessel-Struve kernel and the Kummer confluent hypergeometric function are investigated. Moreover, lower and upper bounds are given for the Bessel-Struve kernel in terms of the exponential function and some $Tur{\acute{a}}n$ type inequalities are deduced.