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A FIXED POINT THEOREM REVISITED

W. A. Kirk AND B. G. KANG

ABSTRACT. In this paper, we obtain an abstract formulation of a
fixed point theorem for nonexpansive mappings. Our theorem is a
non-metric version of Kirk’s original theorem.

A fixed point theorem published approximately thirty years ago
(Kirk [10]), along with two very similar theorems published at the
same time (Browder [5], Gohde [9]), signaled the onset of a flourishing
era of research in metric fixed point theory and related Banach space
geometry (cf., e.g., [1], [8]). Our purpose here is to re-examine the
central ideas of [10] and cast them in a non-metric framework.

We begin with a brief description of the result of [10]. The formu-
lation there asserted that if K is a nonempty closed convex subset of
a reflexive Banach space (reflexivity is not needed if it is assumed K
is weakly compact) and if K has ‘normal structure’, then every nonex-
pansive mapping 7' : K — K has a fixed point.

The assertion that T is nonezpansive means that for each z,y € K,
IT(x) — T(y)|| < Jlz —y||. The normal structure assumption on K, a
condition introduced by Brodskii and Milman in [4], means that every
convex subset H of K which contains more than one point contains a
nondiametral point, i.e., a point g € H exists such that

sup{||lzo — y|| 1y € H} < sup{{lz —y| : v,y € H}.

In 1977 Penot ([12]) reformulated the result of [10] in a more abstract
setting by observing that the original argument carries over if K is
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replaced with a bounded metric space possessing a compact normal
convexity structure. A family ¥ of subsets of a metric space (M, d) is
said to be a convezity structure if ¥ contains the closed balls of M and
if ¥ is closed under intersections. ¥ is compact if every subfamily of &
which has the finite intersection property has nonempty intersection,
and normal if every member of ¥ containing more than one point has a
nondiametral point. The advantage of this more abstract formulation
is that it permits wider application of the result, specifically to Banach
spaces which have topologies relative to which the norm closed balls
are compact.

Here we show that an even more abstract formulation is possible.
The triangle inequality is dropped from the distance axioms, and rather
than the reals, we assume the range of the resulting “distance” function
is a linearly ordered set having a smallest element.

Let X be a set and S a linearly ordered set (with its usual order
topology) having a smallest element, which we denote 0. We call a
mapping Dg : X x X — § a generalized semimetric if

(1) Dg(z,y) =0 =y, (z,ye X):

(2) DS(mvy) = DS(yv"E)’ (.’L‘,y € Y)

If S is the set of nonnegative reals then, as usual, we replace Dg
with D and call D a semimetric.

The function Dg generates a topology on X analogous to the one
generated by a semimetric in the usual sense. (See e.g., Blumenthal
[3; p.10].) A point p € X is said to be a limit point (or accumulation
point) of a subset E of X if given any o € S, a # 0, there is a point
q € E such that Dg(p,q) € (0,a). A set F in X is said to be closed iff
it contains all of its limit points, and a set U in X is said to be open iff
X\U is closed. (Of course if (0,a) = @ for some nonzero a € 9, then
this definition merely generates the discrete topology on S.) If Dg is a
continuous mapping from X x X to S (with the topclogy on X induced
by Dg, then Dg is said to be a continuous generalized semimetric.
While continuity of Dg is not needed for our centrai observations, it is
relevant to our comments in Remark 4.

For z € X and o € S define the closed ball B(:r;a) centered at
with radius « as usual:

B(r;a) = {ue X : Dg(zr,u) < a}.
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We say a set D C X is spherically bounded if there exist z € X and
a € S such that D C B(xz; ). For a such a set ) C X define

cov(D) = N{B: B is a closed ball containing D}.

Now suppose X has a topology relative to which the closed balls are
compact, and let ¥ be the family of all “ball intersections” in X, i.e.,
D € £ iff D = N;¢;B; where each B; is a closed ball in X.

LEMMA 1. Suppose D € ¥ is nonempty, suppose T : D — D, and
let D* C D be minimal with respect to being nonempty, T-invariant,
and in ¥. Then cov(T(D*)) = D*.

Proof. Since T(D*) C D*, and since D* is the intersection of a
family of closed balls in X, it follows that cov(T(D*)) C D*. But
cov(T(D")) € ¥ and T(cov(T(D*))) C T(D*) C cov(T(D*)), so by
minimality of D*, cov(T(D*)) = D*. O

We now make the additional assumption that S has the least upper
bound (lub) property. (The lub property is the usual one: Each set in
S which is bounded above has a smallest upper bound. Dually, this
implies that S has the greatest lower bound (glb) property.)

If D € ¥ is nonempty and contained in some ball centered at a point
of D, the set

R(D) :={a €S : (NuepB(u;a))N D # B}
is nonempty. Define (D) = glb R(D), and let
C(D)={2€D:z€NuepBlu;r(D))}.

Note that if S is connected relative to its order topology, then S has
the lub property.

LEMMA 2. With D and S as above, if S is connected, then C(D) is
a nonempty member of X.
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Proof. By assumption, if & > r(D) then
Co(D) == (NuepB(u;a))ND # 9.

We show that C(D) = Ny (pyCa(D). The conclusion will then follow
from the compactness of the balls of X. So, suppose z € Ny r(pyCa(D)
and suppose Dg(u,z) > r(D) for some u € D. Then since S is con-
nected there exists o € S such that r(D) < a < Dg(u,z). But this
contradicts the fact that z € C, (D). It follows that C(D) # @ and that

c(D) 2 ﬂa;,r(D)Ca(D).
Since the reverse inclusion is immediate, we are dcne. O

We now assume that each nonenmpty member D of ¥ is contained in
a ball centered at one of its own points, and we say that ¥ is normal
if for each D € ¥, either D is a singleton or C(D' is a proper subset
of D. Also, we say that a mapping T : D — D is nonezpansive if
Ds(T'(x), T(y)) < Ds(r,y) for each z,y € D.

The following is the analog to the theorem of [10].

THEOREM 3. Suppose X is a ncnempty set, suppose S is a linearly
ordered set which is connected relative to its order topology, and sup-
pose Dg : X x X — S is a generalized semimetric. Suppose X has
a topology relative to which its closed balls are compact, and suppose
the family ¥ of ball intersections in X is normal. Then if ) # D € %
and if T : D — D is nonexpansive, T has a fixed point.

Proof. Let D* € ¥ be minimal with respect to being a nonempty
T-invariant member of 2. Since the members of ¥ are compact, such
a set exists by a simple applicaticn of Zorn’s lemma. By Lemma 1
cov(T(D*)) = D*of T, Ds(T(2),T(r)) < Dg(z,x) < r(D*) from which
T(D*) € B(T(z);r(D*)). In turn, it follows that D* = cov(T(D*)) C
B(T(z);r(D*)), whence D* C B(T{z):r(D*)), i.e., T(z) € Nyep-B(u;
r(D*)) = C(D*). This proves T : (/(D*) — C(D*:. Since C(D*) € ©
by Lemma 2, minimality of D* implies C(D*) = D*, and since ¥ is
normal, D* must be a singleton. (W
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REMARK. 1. The proof of Theorem 3 is similar to its Banach /metric
counterpart (Kirk [10], Goebel and Kirk [8]; the metric version is given
in Penot [12] and Kirk [11]). Also, although Zorn’s Lemma is used in
the proof, a constructive proof can be given following the method of
Kirk [11] (see also Biiber-Kirk [6}).

A question raised in {10] asked whether the result would remain
valid without the normal structure assumption. This was answered in
the negative by Alspach in 1981 [2].

2. Note in particular that the topology on X in Theorem 3 is not
assumed to be the topology generated by Dg. Indeed, in this theorem
we do not even assume Dg is continuous.

3. A nontrivial example of a linearly ordered space satisfying the
hypotheses of Theorem 3, but which cannot be imbedded in the reals,
is the topologists’ ‘long line’ (see, e.g., [13; p. 191]. An easy example
of a continuous semimetric which is not a metric is given by letting
X =S5 =10,1] and defining D(z,y) = |z — y|2, zy e X.

4. The above setting of this paper can also be used to reformulate a
theorem for ‘contractive’ mappings generally attributed to Edelstein [7;
Remark 3.1]. Let (M, d) be a metric space, and recall that a mapping
T : M — M is said to be contractive if d(T(x),T(y)) < d(z,y) for all
T,y € M, T # y. Edelstein’s result asserts that a contractive mapping
defined on a compact metric space always has a unique fixed point,
and that the Picard iterates beginning at any point of the space always
converge to this fixed point. This fact is a special case of the following.

THEOREM 4. Let X be a set, let S be a linearly ordered set having a
smallest element (denoted 0), and let Dg : X x X — S be a continuous
generalized semimetric. Suppose (X, Dg) is compact, and suppose f :
X — X satisfies:

Ds(f(z), f(y)) < Dsiz,y) forz,y € X, = #y.
Then f has a unique fixed point & € X. If, in addition, S has the lub
property, then Dg(f™(x),z) — 0 for each x € X.

Proof. Define ¥ : X — S by setting ¥(z) = Dg(z, f(x)), = € X,
and observe that ¥ is continuous; hence by compactness of X there
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exists € X such that ¥(Z) < ¥(z) for each z € X. If ¥(Z) # 0, then
by (1) Z # f(Z) so

V(f(z)) = Ds(f(2), f*(2)) < Ds(z, f(2)) = ¥(z)

and this contradicts minimality of ¥(z). Therefore ¥(z) = 0 and again
by (1), Z = f(Z). Uniqueness is immediate from the contractive condi-
tion.

Now suppose S has the lub property, and let x € X. If f*(x) = 7
for some n the conclusion is immediate. Otherwise, let

u = glb{Ds(Z, f*(x)):n=1,2,---}.

Since {Ds(Z, f"(z))} is strictly decreasing in S, Dg(Z, f*(z)) — u.
Also, by compactness, {f"(z)} has a subnet, say {f"*(z)} which con-
verges to a point z € X, from which. by continuity of Dg, Dg(Z, 2) = u.
Suppose u # 0. Then Dg(Z, f(z)) << u and (0, u) is a neighborhood of
Ds(z, f(2)) in S. Since Dg(Z, f**'(z)) — wu, for a sufficiently large,
Dg(Z, f**'(z)) < u contradicting the fact that u :s a lower bound of
the set {Ds(Z, f*(z)) : n =1,2,---}. It follows that Dg(Z,z) = 0 and
by (1), 2 = 7. Thus any convergent subnet of {f™(x)} converges to #
from which the conclusion follows. O

References

(1] A.G. Aksoy and M. A. Khamsi, Nonstandard Methods «n Fized Point Theory,
Springer-Verlag, New York, Berlin, 1990.

(2] D. E. Alspach, A fized point free nonexpansive map, Proc. Amer. Math. Soc.
82 (1981), 423-424.

[3] L. M. Blumenthal, Theory and Applications of Distance Geometry, Oxford
Univ. Press, London, 1953.

[4] M. S. Brodskii and D. P. Milman, On the center of a convex set (Russian),
Dokl. Akad. Nauk SSSR 59 (1948), 837-840.

(5] F. E. Browder, Nonexpansive nonlinear operators in ¢ Banach space, Proc.
Nat. Acad. Sci. U.S.A. 54 (1965), 1041-1044.

[6] T. Biiber and W. A. Kirk, Constructive aspects of fized point theory for non-
erpansive mappings, to appear.

[7] M. Edelstein, On fized and periodic points under contractive mappings, J. Lon-
don Math. Soc. 37 (1962), T4-79.



A fixed point theorem revisited 291

[8] K. Goebel and W. A. Kirk, Topics in Metric Fized Point Theory, Cambridge
Univ. Press, Cambridge, 1990.

[9] D. Gdhde, Zum Prinzip der kontraktiven Abbildungen, Math. Nachr. 30 (1965),
251-258.

[10) W. A. Kirk, A fized point theoremn for mappings which do not increase dis-
tances, Amer. Math. Monthly 72 (1965), 1004-1006.

[11] W. A. Kirk, Nonezpansive mappings in metric and Banach spaces, Rend. Sem.
Mat. e Fis. di Milano, vol LI (1981), 133-144.

[12] J. P. Penot, Fized point theorems without convezity, Bull. Math. Soc. France,
Memoire 60 (1979), 129-152.

[13] S. Willard, General Topology, Addison Wesley, Reading, Massachusetts, 1970.

W. A. Kirk

Department of Mathematics
The University of lowa
Iowa City, TA 52242 U.S.A.

B. G. Kang

Department of Mathematics
Sungshin Women’s University
Seoul 136-742, Korea



