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BOUNDS FOR RADII OF CONVEXITY OF

SOME q-BESSEL FUNCTIONS

İbrahi̇m Aktaş and Hali̇t Orhan

Abstract. In the present investigation, by applying two different nor-

malizations of the Jackson’s second and third q-Bessel functions tight
lower and upper bounds for the radii of convexity of the same functions

are obtained. In addition, it was shown that these radii obtained are

solutions of some transcendental equations. The known Euler-Rayleigh
inequalities are intensively used in the proof of main results. Also, the

Laguerre-Pólya class of real entire functions plays an important role in

this work.

1. Introduction

Let Dr be the open disk {z ∈ C : |z| < r} with radius r > 0 and D1 = D.
Let A denote the class of analytic functions f : Dr → C,

f(z) = z +
∑
n≥2

anz
n,

which satisfy the normalization conditions f(0) = f ′(0)−1 = 0. By S we mean
the class of functions belonging to A which are univalent in Dr. The class of
convex functions is defined by

K =

{
f ∈ S : <

(
1 +

zf ′′(z)

f ′(z)

)
> 0 for all z ∈ Dr

}
.

It is known that the convex functions do not need to be normalized, namely,
the definition of K is also valid non-normalized analytic function f : D → C
which has the property f ′(0) 6= 0. The radius of convexity of an analytic locally
univalent function f : C→ C is defined by

rc(f) = sup

{
r > 0 : <

(
1 +

zf ′′(z)

f ′(z)

)
> 0 for all z ∈ Dr

}
.

Received March 4, 2019; Accepted August 19, 2019.

2010 Mathematics Subject Classification. Primary 30C45, 30C15, 33C10.
Key words and phrases. Convex functions, radius of convexity, Mittag-Leffler expansions,

q-Bessel functions, zeros of q-Bessel functions, Laguerre-Pólya class of entire functions.
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Note that rc(f) is the largest radius for which the image domain f
(
Drc(f)

)
is

a convex domain in C. For more information about convex functions we refer
to Duren’s book [17] and to the references therein.

The Jackson’s second and third q-Bessel functions are defined as follows:

J (2)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∑
n≥0

(−1)n
(
z
2

)2n+ν

(q; q)n(qν+1; q)n
qn(n+ν)

and

J (3)
ν (z; q) =

(qν+1; q)∞
(q; q)∞

∑
n≥0

(−1)nz2n+ν

(q; q)n(qν+1; q)n
q

1
2n(n+1),

where z ∈ C, ν > −1, q ∈ (0, 1) and

(a; q)0 = 1, (a; q)n =

n∏
k=1

(
1− aqk−1

)
, (a, q)∞ =

∏
k≥1

(
1− aqk−1

)
.

It is known that the Jackson’s second and third q-Bessel functions are q-
extensions of the classical Bessel function of the first kind Jν . Clearly, for
fixed z we have

J (2)
ν ((1− z)q; q)→ Jν(z)

and
J (3)
ν ((1− z)q; q)→ Jν(2z)

as q ↗ 1. The readers can find the properties of Jackson’s second and third
q-Bessel functions in [18,19,21,22] and also comprehensive information on the
Bessel function of the first kind can be found in Watson’s treatise [25]. Recently,
the geometric properties of some special functions (like Bessel, Struve, Lommel
and Wright functions) have been investigated by many authors (see [2–6, 8–
16, 20, 23, 26]). Also, the authors in [1, 7] have studied the radii of starlikeness
and convexity of some q-Bessel functions. In particular, tight lower and upper
bounds for the radii of starlikeness of some q-Bessel functions were obtained in
[1]. Most of above papers benefited from some properties of the positive zeros
of some special functions. Also, the Laguerre-Pólya class LP of real entire
functions, which consist of uniform limits of real polynomials whose zeros are
all real, was used intensively (for more details on the Laguerre-Pólya class of
entire functions we refer to [7] and to the references therein). A real entire
function q belongs to the Laguerre-Pólya class LP if it can be represented in
the form

q(x) = cxme−αx
2+βx

∏
n≥1

(
1 +

x

xn

)
e−

x
xn ,

where c, β, xn are real numbers, α ≥ 0, m is a natural number or zero, and∑
n≥1 x

−2
n converges. Motivated by the earlier works, in this work our main

aim is to give some lower and upper bounds for the radii of convexity of some
normalized q-Bessel functions. The results presented in this paper complement
the results of [7] about the radii of convexity and extend the known results
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from [2] on classical Bessel functions of the first kind to q-Bessel functions.
In this study we consider two different normalized forms of Jackson’s second
and third q-Bessel functions which are analytic in the unit disk of the complex

plane. Because the functions J
(2)
ν (·; q) and J

(3)
ν (·; q) do not belong to A, first

we consider the following four normalized forms as in [7]. For ν > −1,

g(2)
ν (z; q) = 2νcν(q)z1−νJ (2)

ν (z; q) =
∑
n≥0

(−1)nqn(n+ν)

4n(q; q)n(qν+1; q)n
z2n+1,

h(2)
ν (z; q) = 2νcν(q)z1− ν2 J (2)

ν (
√
z; q) =

∑
n≥0

(−1)nqn(n+ν)

4n(q; q)n(qν+1; q)n
zn+1,

g(3)
ν (z; q) = cν(q)z1−νJ (3)

ν (z; q) =
∑
n≥0

(−1)nq
1
2n(n+1)

(q; q)n(qν+1; q)n
z2n+1,

h(3)
ν (z; q) = cν(q)z1− ν2 J (3)

ν (
√
z; q) =

∑
n≥0

(−1)nq
1
2n(n+1)

(q; q)n(qν+1; q)n
zn+1,

where cν(q) = (q; q)∞
/

(qν+1; q)∞. As a result of the above normalizations, all
of the above functions belong to the class A.

2. Bounds for the radii of convexity of some normalized q-Bessel
functions

In this section we give some tight lower and upper bounds for the radii of
convexity of the above mentioned four normalized forms of the Jackson’s second
and third q-Bessel functions. Also, we show that the radii of convexity of the
above functions are solutions of some transcendental equations.

Theorem 2.1. Let ν > −1. Then the radius of convexity rc
(
g

(2)
ν (z; q)

)
of the

function

z 7→ g(2)
ν (z; q) = 2νcν(q)z1−νJ (2)

ν (z; q)

is the smallest positive root of the equation

(1− ν)2J (2)
ν (r; q) + (3− 2ν)rdJ (2)

ν (r; q)/dr + r2d2J (2)
ν (r; q)/dr2 = 0

and satisfies the following inequalities√
4 (1− qν+1) (1− q)

9qν+1
< rc

(
g(2)
ν (z; q)

)
<

√
36(q2 − 1) (1− qν+1) (1− qν+2)

qν+1Sν(q)
,

2
4

√
(1 + q)(1− q)2 (1− qν+1)

2
(qν+2 − 1)

q2(ν+1)Sν(q)
< rc

(
g(2)
ν (z; q)

)
<

√
4 (1− qν+1) (1− qν+3)T (q)Sν(q)

qν+1(1 + q) (Pν(q) +Rν(q))
,
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where

Pν(q) = 1458q − 729qν+2 − 1512qν+3 − 2241qν+4 − 837qν+5 − 54qν+6

+ 479qν+7 + 729q2ν+5,

Rν(q) = 783q2ν+6 + 783q2ν+7 + 152q2ν+8 + 98q6 − 675q4 + 54q3

+ 783q2 + 729,

Sν(q) = 31qν+3 + 81qν+2 + 50q2 − 81q − 81

and

T (q) = (q − 1)(q3 + 2q2 + 2q + 1).

Note that by multiplying by (1 − q)−1 both sides of the above inequalities
and taking the limit as q ↗ 1 for ν > −1 we obtain the first two inequalities
of [2, Theorem 6], namely:

(1)
2
√
ν + 1

3
< rc(gν) < 6

√
(ν + 1)(ν + 2)

56ν + 137

and

(2) 2
4

√
(ν + 1)2(ν + 2)

56ν + 137
< rc(gν) <

√
2(ν + 1)(ν + 3)(56ν + 137)

208ν2 + 1172ν + 1693
,

where rc(gν) stands for the radii of convexity of the normalized Bessel function

z 7→ gν(z) = 2νΓ(ν + 1)z1−νJν(z).

Theorem 2.2. Let ν > −1. Then the radius of convexity rc
(
h

(2)
ν (z; q)

)
of the

function

z 7→ h(2)
ν (z; q) = 2νcν(q)z1− ν2 J (2)

ν (
√
z; q)

is the smallest positive root of the equation

(2− ν)
2
J (2)
ν (
√
r; q) + (5− 2ν)

√
rdJ (2)

ν (
√
r; q)/dr + rd2J (2)

ν (
√
r; q)/dr2 = 0

and satisfies the following inequalities

(1− q)(1− qν+1)

qν+1
< rc

(
h(2)
ν (z; q)

)
<

8(qν+1 − 1)(qν+2 − 1)(1− q2)

qν+1Uν(q)
,

√
8(1− q)2(1 + q)(1− qν+1)2(1− qν+2)

q2ν+2Uν(q)
< rc

(
h(2)
ν (z; q)

)
<

2(1− qν+1)(qν+3 − 1)Uν(q)T (q)

(1 + q)qν+1 (Mν(q) +Nν(q))
,

where

Uν(q) =
(
8q − 8qν+2 + qν+3 − 9q2 + 8

)
,

Mν(q) = 32q − 16qν+2 − 21qν+3 − 37qν+4 + 6qν+5 + 11qν+6 + 3qν+7
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and

Nν(q) = 16q2ν+5 + 5q2ν+6 + 5q2ν+7 + q2ν+8 + 5q2 − 11q3 − 27q4 + 12q6 + 16.

Here we would like to emphasize that by multiplying by (1−q)−2 both sides
of the above inequalities and taking the limit as q ↗ 1 for ν > −1 we obtain
the first two inequalities of [2, Theorem 7], namely:

(3) ν + 1 < rc(hν) <
16(ν + 1)(ν + 2)

7ν + 23

and

(4)

√
16(ν + 1)2(ν + 2)

7ν + 23
< rc(hν) <

2(ν + 1)(ν + 3)(7ν + 23)

9ν2 + 60ν + 115
,

where rc(hν) stands for the radii of convexity of the normalized Bessel function

z 7→ hν(z) = 2νΓ(ν + 1)z1− ν2 Jν(
√
z).

Theorem 2.3. Let ν > −1. Then the radius of convexity rc
(
g

(3)
ν (z; q)

)
of the

function

z 7→ g(3)
ν (z; q) = cν(q)z1−νJ (3)

ν (z; q)

is the smallest positive root of the equation

(1− ν)2J (3)
ν (r; q) + (3− 2ν)rdJ (3)

ν (r; q)/dr + r2d2J (3)
ν (r; q)/dr2 = 0

and satisfies the following inequalities√
(1− qν+1) (1− q)

9q
< rc

(
g(3)
ν (z; q)

)
<

√
9(q2 − 1) (1− qν+1) (1− qν+2)

qYν(q)
,

4

√
(1 + q)(1− q)2 (1− qν+1)

2
(qν+2 − 1)

q2Yν(q)
< rc

(
g(3)
ν (z; q)

)
<

√
(1− qν+1) (1− qν+3)T (q)Yν(q)

3q(q + 1) (θν(q) + ϕν(q))
,

where

θν(q) = 261q − 18qν+2 − 504qν+3 − 620qν+4 − 504qν+5 − 18qν+6 + 67q2ν+5,

ϕν(q) = 261q2ν+6 + 261q2ν+7 + 243q2ν+8 + 67q3 + 261q2 + 243

and

Yν(q) = 81qν+3 + 31qν+2 − 31q − 81.

Note that by multiplying by (1 − q)−1 both sides of the above inequalities
and taking the limit as q ↗ 1 for ν > −1 we obtain the following inequalities

(5)

√
ν + 1

3
< rc(gν) < 3

√
(ν + 1)(ν + 2)

56ν + 137
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and

(6)
4

√
(ν + 1)2(ν + 2)

56ν + 137
< rc(gν) <

√
(ν + 1)(ν + 3)(56ν + 137)

2 (208ν2 + 1172ν + 1693)
.

Theorem 2.4. Let ν > −1. Then the radius of convexity rc
(
h

(3)
ν (z; q)

)
of the

function

z 7→ h(3)
ν (z; q) = cν(q)z1− ν2 J (3)

ν (
√
z; q)

is the smallest positive root of the equation

(2− ν)
2
J (3)
ν (
√
r; q) + (5− 2ν)

√
rdJ (3)

ν (
√
r; q)/dr + rd2J (3)

ν (
√
r; q)/dr2 = 0

and satisfies the following inequalities

(1− q)(1− qν+1)

4q
< rc

(
h(3)
ν (z; q)

)
<

2(qν+1 − 1)(qν+2 − 1)(q2 − 1)

qEν(q)
,

√
(1− q)2(1 + q)(1− qν+1)2(qν+2 − 1)

2q2Eν(q)
< rc

(
h(3)
ν (z; q)

)
<

(1− qν+1)(qν+3 − 1)Eν(q)T (q)

2q(1 + q) (Kν(q) + Lν(q))
,

where

Eν(q) =
(
8qν+3 − qν+2 + q − 8

)
,

Kν(q) = 5q + 11qν+2 − 21qν+3 − 34qν+4 − 21qν+5 + 11qν+6

and

Lν(q) = q2ν+5 + 5q2ν+6 + 5q2ν+7 + 16q2ν+8 + 5q2 + q3 + 16.

Here we would like to emphasize that by multiplying by (1−q)−2 both sides
of the above inequalities and taking the limit as q ↗ 1 for ν > −1, we obtain
the next two inequalities

(7)
ν + 1

4
< rc(hν) <

4(ν + 1)(ν + 2)

7ν + 23

and

(8)

√
(ν + 1)2(ν + 2)

7ν + 23
< rc(hν) <

(ν + 1)(ν + 3)(7ν + 23)

2 (9ν2 + 60ν + 115)
.

It is important to mention that by making a comparison among of above
obtained inequalities we have that the left-hand sides of (5) and (6) are weaker
than the left hand sides of (1) and (2), respectively. However, the right-hand
sides of (5) and (6) improve the right-hand sides of (1) and (2), respectively.
On the other hand, the left-hand sides of (7) and (8) are weaker than the left-
hand sides of (3) and (4), while the right-hand sides of (7) and (8) improve the
right-hand sides of (3) and (4).
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Proof of Theorem 2.1. By using the Alexander duality theorem for starlike

and convex functions we can say that the function g
(2)
ν (z; q) is convex if and

only if z 7→ z
(
g

(2)
ν (z; q)

)′
is starlike. But, the smallest positive zero of z 7→(

z
(
g

(2)
ν (z; q)

)′)′
is actually the radius of starlikeness of z 7→ z

(
g

(2)
ν (z; q)

)′
,

according to [9, 10]. Therefore, the radius of convexity rc(g
(2)
ν ) is the smallest

positive root of the equation

(
r
(
g

(2)
ν (r; q)

)′)′
= 0. Thus, we get that the ra-

dius of convexity of the function z 7→ g
(2)
ν (z; q) is the smallest positive root of

the equation

(1− ν)2J (2)
ν (r; q) + (3− 2ν)rdJ (2)

ν (r; q)/dr + r2d2J (2)
ν (r; q)/dr2 = 0.

Now, recall that the zeros jν,n(q), n ∈ N, of the Jackson’s second q-Bessel
function are all real and simple, according to [18, Theorem 4.2]. Then, the func-

tion g
(2)
ν (·; q) belongs to the Laguerre-Pólya class LP of real entire functions.

Because of the properties of the class LP the function z 7→
(
z
(
g

(2)
ν (z; q)

)′)′
belongs also to the class LP. Hence the function z 7→

(
z
(
g

(2)
ν (z; q)

)′)′
has

only real zeros. Also its growth order ρ is 0, that is

ρ = lim
n→∞

n log n

2n log 2 + log(q; q)n + log(qν+1; q)n − 2 log(2n+ 1)− n(n+ ν) log q

= 0,

since as n→∞ we have (q; q)n → (q; q)∞ <∞ and (qν+1; q)n → (qν+1; q)∞ <
∞. Now, by applying Hadamard’s Theorem [24, p. 26] we obtain

Gν(z; q) =

(
z
(
g(2)
ν (z; q)

)′)′
=
∏
n≥1

(
1− z2

(αν,n(q))
2

)
,

where αν,n(q) is the nth zero of the function Gν(·; q). Now, via logarithmic
derivation of Gν(·; q) we obtain

(9)
G′ν(z; q)

Gν(z; q)
= −2

∑
k≥0

εk+1z
2k+1, |z| < αν,1(q),

where εk =
∑
n≥1 (αν,n(q))

−2k
. Also, by using the infinite sum representation

of Gν we get

(10)
G′ν(z; q)

Gν(z; q)
=
∑
n≥0

Anz
2n+1

/∑
n≥0

Bnz
2n,
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where

An =
(−1)n+1(2n+ 2)(2n+ 3)2q(n+1)(n+ν+1)

22n+2(q; q)n+1(qν+1; q)n+1

and

Bn =
(−1)n(2n+ 1)2qn(n+ν)

22n(q; q)n(qν+1; q)n
.

By comparing (9) and (10) and matching all terms with the same degree we
have the following Euler-Rayleigh sums εk =

∑
n≥1 α

−2k
ν,n (q) in terms of ν and

q. That is,

ε1 =
9qν+1

4(qν+1 − 1)(q − 1)
,

ε2 =
q2ν+2Sν(q)

16(qν+1 − 1)2(qν+2 − 1)(q − 1)2(q + 1)

and

ε3 =
q3(ν+1) (Pν(q) +Rν(q))

64(qν+1 − 1)3(1− qν+2)(1− qν+3)(q − 1)2T (q)
.

Now, by considering these Euler-Rayleigh sums in the known Euler-Rayleigh
inequalities

ε
− 1
k

k < (αν,1(q))
2
<

εk
εk+1

for ν > −1 and k ∈ {1, 2} we obtain the following inequalities√
4 (1− qν+1) (1− q)

9qν+1
< rc

(
g(2)
ν (z; q)

)
<

√
36(q2 − 1) (1− qν+1) (1− qν+2)

qν+1Sν(q)

and

2
4

√
(1 + q)(1− q)2 (1− qν+1)

2
(qν+2 − 1)

q2(ν+1)Sν(q)
< rc

(
g(2)
ν (z; q)

)
<

√
4 (1− qν+1) (1− qν+3)T (q)Sν(q)

qν+1(1 + q) (Pν(q) +Rν(q))
.

�

Proof of Theorem 2.2. We proceed exactly as in the proof of Theorem 2.1. By
using the Alexander duality theorem for starlike and convex functions we can

say that the function h
(2)
ν (z; q) is convex if and only if z 7→ z

(
h

(2)
ν (z; q)

)′
is

starlike. But, the smallest positive zero of z 7→
(
z
(
h

(2)
ν (z; q)

)′)′
is actually

the radius of starlikeness of z 7→ z
(
h

(2)
ν (z; q)

)′
, according to [9,10]. Therefore,

the radius of convexity rc(h
(2)
ν ) is the smallest positive root of the equation
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r
(
h

(2)
ν (r; q)

)′)′
= 0. Thus, we get that the radius of convexity of the function

z 7→ h
(2)
ν (z; q) is the smallest positive root of the equation

(2− ν)
2
J (2)
ν (
√
r; q) + (5− 2ν)

√
rdJ (2)

ν (
√
r; q)/dr + rd2J (2)

ν (
√
r; q)/dr2 = 0.

Now, recall that the zeros jν,n(q), n ∈ N, of the Jackson’s second q-Bessel
function are all real and simple, according to [18, Theorem 4.2]. Then, the func-

tion h
(2)
ν (·; q) belongs to the Laguerre-Pólya class LP of real entire functions.

Because of the properties of the class LP the function z 7→
(
z
(
h

(2)
ν (z; q)

)′)′
belongs also to the class LP. Hence the function z 7→

(
z
(
h

(2)
ν (z; q)

)′)′
has

only real zeros. Also its growth order ρ is 0, that is

ρ = lim
n→∞

n log n

2n log 2 + log(q; q)n + log(qν+1; q)n − 2 log(n+ 1)− n(n+ ν) log q

= 0,

since as n→∞ we have (q; q)n → (q; q)∞ <∞ and (qν+1; q)n → (qν+1; q)∞ <
∞. Now, by applying Hadamard’s Theorem [24, p. 26] we obtain

Φν(z; q) =

(
z
(
h(2)
ν (z; q)

)′)′
=
∏
n≥1

(
1− z

βν,n(q)

)
,

where βν,n(q) is the nth zero of the function Φν(·; q). Now, via logarithmic
derivation of Φν(·; q) we obtain

(11)
Φ′ν(z; q)

Φν(z; q)
= −

∑
k≥0

µk+1z
k, |z| < βν,1(q),

where µk =
∑
n≥1 (βν,n(q))

−k
. Also, by using the infinite sum representation

of Φν we get

(12)
Φ′ν(z; q)

Φν(z; q)
=
∑
n≥0

Cnz
n

/∑
n≥0

Dnz
n,

where

Cn =
(−1)n+1(n+ 1)(n+ 2)2q(n+1)(n+ν+1)

22n+2(q; q)n+1(qν+1; q)n+1

and

Dn =
(−1)n(2n+ 1)2qn(n+ν)

22n(q; q)n(qν+1; q)n
.

By comparing (11) and (12) and matching all terms with the same degree we
have the following Euler-Rayleigh sums µk =

∑
n≥1 β

−k
ν,n(q) in terms of ν and
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q. That is,

µ1 =
qν+1

(qν+1 − 1)(q − 1)
,

µ2 =
q2ν+2Uν(q)

8(qν+1 − 1)2(1− qν+2)(q − 1)2(q + 1)

and

µ3 =
q3(ν+1) (Mν(q) +Nν(q))

16(qν+1 − 1)3(qν+2 − 1)(qν+3 − 1)(q − 1)2T (q)
.

Now, by considering these Euler-Rayleigh sums in the known Euler-Rayleigh
inequalities

µ
− 1
k

k < βν,1(q) <
µk
µk+1

for ν > −1 and k ∈ {1, 2} we obtain the next inequalities

(1− q)(1− qν+1)

qν+1
< rc

(
h(2)
ν (z; q)

)
<

8(qν+1 − 1)(qν+2 − 1)(1− q2)

qν+1Uν(q)
,

√
8(1− q)2(1 + q)(1− qν+1)2(1− qν+2)

q2ν+2Uν(q)
< rc

(
h(2)
ν (z; q)

)
<

2(1− qν+1)(qν+3 − 1)Uν(q)T (q)

(1 + q)qν+1 (Mν(q) +Nν(q))
.

�

Proof of Theorem 2.3. By using the Alexander duality theorem for starlike

and convex functions we can say that the function g
(3)
ν (z; q) is convex if and

only if z 7→ z
(
g

(3)
ν (z; q)

)′
is starlike. But, the smallest positive zero of z 7→(

z
(
g

(3)
ν (z; q)

)′)′
is actually the radius of starlikeness of z 7→ z

(
g

(3)
ν (z; q)

)′
,

according to [9, 10]. Therefore, the radius of convexity rc(g
(3)
ν ) is the smallest

positive root of the equation

(
r
(
g

(3)
ν (r; q)

)′)′
= 0. Thus, we get that the ra-

dius of convexity of the function z 7→ g
(3)
ν (z; q) is the smallest positive root of

the equation

(1− ν)2J (3)
ν (r; q) + (3− 2ν)rdJ (3)

ν (r; q)/dr + r2d2J (3)
ν (r; q)/dr2 = 0.

Now, recall that the zeros lν,n(q), n ∈ N, of the Jackson’s third q-Bessel func-
tion are all real and simple, according to [18, Theorem 4.2]. Then, the function

g
(3)
ν (·; q) belongs to the Laguerre-Pólya class LP of real entire functions. Be-

cause of the properties of the class LP the function z 7→
(
z
(
g

(3)
ν (z; q)

)′)′
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belongs also to the class LP. Hence the function z 7→
(
z
(
g

(3)
ν (z; q)

)′)′
has

only real zeros. Also its growth order ρ is 0, that is

ρ = lim
n→∞

n log n

log(q; q)n + log(qν+1; q)n − 2 log(2n+ 1)− n(n+1)
2 log q

= 0,

since as n→∞ we have (q; q)n → (q; q)∞ <∞ and (qν+1; q)n → (qν+1; q)∞ <
∞. Now, by applying Hadamard’s Theorem [24, p. 26] we obtain

Hν(z; q) =

(
z
(
g(3)
ν (z; q)

)′)′
=
∏
n≥1

(
1− z2

(hν,n(q))
2

)
,

where hν,n(q) is the nth zero of the function Hν(·; q). Now, via logarithmic
derivation of Hν(·; q) we obtain

(13)
H′ν(z; q)

Hν(z; q)
= −2

∑
k≥0

ηk+1z
2k+1, |z| < hν,1(q),

where ηk =
∑
n≥1 (hν,n(q))

−2k
. Also, by using the infinite sum representation

of Hν we have

(14)
H′ν(z; q)

Hν(z; q)
=
∑
n≥0

Enz
2n+1

/∑
n≥0

Fnz
2n,

where

En =
(−1)n+1(2n+ 2)(2n+ 3)2q

(n+1)(n+2)
2

(q; q)n+1(qν+1; q)n+1

and

Fn =
(−1)n(2n+ 1)2q

n(n+1)
2

(q; q)n(qν+1; q)n
.

By comparing (13) and (14) and matching all terms with the same degree we
have the following Euler-Rayleigh sums ηk =

∑
n≥1 h

−2k
ν,n (q) in terms of ν and

q. That is,

η1 =
9q

(qν+1 − 1)(q − 1)
,

η2 =
q2Yν(q)

(qν+1 − 1)2(qν+2 − 1)(q − 1)2(q + 1)

and

η3 =
3q3 (θν(q) + ϕν(q))

64(qν+1 − 1)3(1− qν+2)(1− qν+3)(q − 1)2T (q)
.

Now, by considering these Euler-Rayleigh sums in the known Euler-Rayleigh
inequalities

η
− 1
k

k < (hν,1(q))
2
<

ηk
ηk+1
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for ν > −1 and k ∈ {1, 2} we obtain the following inequalities√
(1− qν+1) (1− q)

9q
< rc

(
g(3)
ν (z; q)

)
<

√
9(q2 − 1) (1− qν+1) (1− qν+2)

qYν(q)
,

4

√
(1 + q)(1− q)2 (1− qν+1)

2
(qν+2 − 1)

q2Yν(q)
< rc

(
g(3)
ν (z; q)

)
<

√
(1− qν+1) (1− qν+3)T (q)Yν(q)

3q(q + 1) (θν(q) + ϕν(q))
.

�

Proof of Theorem 2.4. By using the Alexander duality theorem for starlike

and convex functions we can say that the function h
(3)
ν (z; q) is convex if and

only if z 7→ z
(
h

(3)
ν (z; q)

)′
is starlike. But, the smallest positive zero of z 7→(

z
(
h

(3)
ν (z; q)

)′)′
is actually the radius of starlikeness of z 7→ z

(
h

(3)
ν (z; q)

)′
,

according to [9, 10]. Therefore, the radius of convexity rc(h
(3)
ν ) is the smallest

positive root of the equation

(
r
(
h

(3)
ν (r; q)

)′)′
= 0. Thus, we get that the ra-

dius of convexity of the function z 7→ h
(3)
ν (z; q) is the smallest positive root of

the equation

(2− ν)
2
J (3)
ν (
√
r; q) + (5− 2ν)

√
rdJ (3)

ν (
√
r; q)/dr + rd2J (3)

ν (
√
r; q)/dr2 = 0.

Now, recall that the zeros lν,n(q), n ∈ N, of the Jackson’s third q-Bessel func-
tion are all real and simple, according to [18, Theorem 4.2]. Then, the function

h
(3)
ν (·; q) belongs to the Laguerre-Pólya class LP of real entire functions. Be-

cause of the properties of the class LP the function z 7→
(
z
(
h

(3)
ν (z; q)

)′)′
belongs also to the class LP. Hence, the function z 7→

(
z
(
h

(3)
ν (z; q)

)′)′
has

only real zeros. Also its growth order ρ is 0, that is

ρ = lim
n→∞

n log n

log(q; q)n + log(qν+1; q)n − 2 log(n+ 1)− n(n+1)
2 log q

= 0,

since as n→∞ we have (q; q)n → (q; q)∞ <∞ and (qν+1; q)n → (qν+1; q)∞ <
∞. Now, by applying Hadamard’s Theorem [24, p. 26] we obtain

ψν(z; q) =

(
z
(
h(3)
ν (z; q)

)′)′
=
∏
n≥1

(
1− z

γν,n(q)

)
,
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where γν,n(q) is the nth zero of the function ψν(·; q). Now, via logarithmic
derivation of ψν(·; q) we obtain

(15)
ψ′ν(z; q)

ψν(z; q)
= −

∑
k≥0

σk+1z
k, |z| < γν,1(q),

where σk =
∑
n≥1 (γν,n(q))

−k
. Also, by using the infinite sum representation

of Φν we get

(16)
ψ′ν(z; q)

ψν(z; q)
=
∑
n≥0

Gnz
n

/∑
n≥0

Hnz
n,

where

Gn =
(−1)n+1(n+ 1)(n+ 2)2q

(n+1)(n+2)
2

(q; q)n+1(qν+1; q)n+1
and Hn =

(−1)n(n+ 1)2q
n(n+1)

2

(q; q)n(qν+1; q)n
.

By comparing (15) and (16) and matching all terms with the same degree we
have the following Euler-Rayleigh sums σk =

∑
n≥1 γ

−k
ν,n(q) in terms of ν and

q. That is,

σ1 =
4q

(qν+1 − 1)(q − 1)
,

σ2 =
2q2Eν(q)

(qν+1 − 1)2(1− qν+2)(1− q)2(1− q)
and

σ3 =
4q3 (Kν(q) + Lν(q))

(1− qν+1)3(1− qν+2)(1− qν+3)(1− q)2T (q)
.

Now, by considering these Euler-Rayleigh sums in the known Euler-Rayleigh
inequalities

σ
− 1
k

k < γν,1(q) <
σk
σk+1

for ν > −1 and k ∈ {1, 2} we obtain the next two inequalities

(1− q)(1− qν+1)

4q
< rc

(
h(3)
ν (z; q)

)
<

2(qν+1 − 1)(qν+2 − 1)(q2 − 1)

qEν(q)
,

√
(1− q)2(1 + q)(1− qν+1)2(qν+2 − 1)

2q2Eν(q)
< rc

(
h(3)
ν (z; q)

)
<

(1− qν+1)(qν+3 − 1)Eν(q)T (q)

2q(1 + q) (Kν(q) + Lν(q))
.

�
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[11] Á. Baricz and S. Ponnusamy, Starlikeness and convexity of generalized Bessel functions,

Integral Transforms Spec. Funct. 21 (2010), no. 9-10, 641–653. https://doi.org/10.

1080/10652460903516736
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