• Title/Summary/Keyword: Autoregressive (AR) model

Search Result 144, Processing Time 0.035 seconds

PM2.5 Estimation Based on Image Analysis

  • Li, Xiaoli;Zhang, Shan;Wang, Kang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.907-923
    • /
    • 2020
  • For the severe haze situation in the Beijing-Tianjin-Hebei region, conventional fine particulate matter (PM2.5) concentration prediction methods based on pollutant data face problems such as incomplete data, which may lead to poor prediction performance. Therefore, this paper proposes a method of predicting the PM2.5 concentration based on image analysis technology that combines image data, which can reflect the original weather conditions, with currently popular machine learning methods. First, based on local parameter estimation, autoregressive (AR) model analysis and local estimation of the increase in image blur, we extract features from the weather images using an approach inspired by free energy and a no-reference robust metric model. Next, we compare the coefficient energy and contrast difference of each pixel in the AR model and then use the percentages to calculate the image sharpness to derive the overall mass fraction. Furthermore, the results are compared. The relationship between residual value and PM2.5 concentration is fitted by generalized Gauss distribution (GGD) model. Finally, nonlinear mapping is performed via the wavelet neural network (WNN) method to obtain the PM2.5 concentration. Experimental results obtained on real data show that the proposed method offers an improved prediction accuracy and lower root mean square error (RMSE).

Application of time series based damage detection algorithms to the benchmark experiment at the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan

  • Noh, Hae Young;Nair, Krishnan K.;Kiremidjian, Anne S.;Loh, C.H.
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.95-117
    • /
    • 2009
  • In this paper, the time series based damage detection algorithms developed by Nair, et al. (2006) and Nair and Kiremidjian (2007) are applied to the benchmark experimental data from the National Center for Research on Earthquake Engineering (NCREE) in Taipei, Taiwan. Both acceleration and strain data are analyzed. The data are modeled as autoregressive (AR) processes, and damage sensitive features (DSF) and feature vectors are defined in terms of the first three AR coefficients. In the first algorithm developed by Nair, et al. (2006), hypothesis tests using the t-statistic are applied to evaluate the damaged state. A damage measure (DM) is defined to measure the damage extent. The results show that the DSF's from the acceleration data can detect damage while the DSF from the strain data can be used to localize the damage. The DM can be used for damage quantification. In the second algorithm developed by Nair and Kiremidjian (2007) a Gaussian Mixture Model (GMM) is used to model the feature vector, and the Mahalanobis distance is defined to measure damage extent. Additional distance measures are defined and applied in this paper to quantify damage. The results show that damage measures can be used to detect, quantify, and localize the damage for the high intensity and the bidirectional loading cases.

A Study of Estimation Method for Auto-Regressive Model with Non-Normal Error and Its Prediction Accuracy (비정규 오차를 고려한 자기회귀모형의 추정법 및 예측성능에 관한 연구)

  • Lim, Bo Mi;Park, Cheong-Sool;Kim, Jun Seok;Kim, Sung-Shick;Baek, Jun-Geol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.2
    • /
    • pp.109-118
    • /
    • 2013
  • We propose a method for estimating coefficients of AR (autoregressive) model which named MLPAR (Maximum Likelihood of Pearson system for Auto-Regressive model). In the present method for estimating coefficients of AR model, there is an assumption that residual or error term of the model follows the normal distribution. In common cases, we can observe that the error of AR model does not follow the normal distribution. So the normal assumption will cause decreasing prediction accuracy of AR model. In the paper, we propose the MLPAR which does not assume the normal distribution of error term. The MLPAR estimates coefficients of auto-regressive model and distribution moments of residual by using pearson distribution system and maximum likelihood estimation. Comparing proposed method to auto-regressive model, results are shown to verify improved performance of the MLPAR in terms of prediction accuracy.

Threshold Autoregressive Models for VBR MPEG Video Traces (VBR MPEG 비디오 추적을 위한 임계치 자회귀 모델)

  • 오창윤;배상현
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.4
    • /
    • pp.101-112
    • /
    • 1999
  • In this paper variable bit rate VBR Moving Picture Experts Group (MPEG) coded full-motion video traffic is modeled by a nonlinear time-series process. The threshold autoregressive (TAR) process is of particular interest. The TAR model is comprised of a set of autoregressive (AR) processes that are switched between amplitude sub-regions. To model the dynamics of the switching between the sub-regions a selection of amplitude dependent thresholds and a delay value is required. To this end, an efficient and accurate TAR model construction algorithm is developed to model VBR MPEG-coded video traffic. The TAR model is shown to accurately represent statistical characteristics of the actual full-motion video trace. Furthermore. in simulations for the bit-loss rate actual and TAR traces show good agreement.

  • PDF

Test of Homogeneity for Intermittent Panel AR(1) Processes and Application (간헐적인 패널 1차 자기회귀과정들의 동질성 검정과 적용)

  • Lee, Sung Duck;Kim, Sun Woo;Jo, Na Rae
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.7
    • /
    • pp.1163-1170
    • /
    • 2014
  • The concepts and structure of intermittent panel time series data are introduced. We suggest a Wald test statistic for the test of homogeneity for intermittent panel first order autoregressive model and its limit distribution is derived. We consider the fitting the model with pooling data using sample mean at the time point if homogeneity for intermittent panel AR(1) is satisfied. We performed simulations to examine the limit distribution of the homogeneity test statistic for intermittent panel AR(1). In application, we fit the intermittent panel AR(1) for panel Mumps data and investigate the test of homogeneity.

Contemporary review on the bifurcating autoregressive models : Overview and perspectives

  • Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.1137-1149
    • /
    • 2014
  • Since the bifurcating autoregressive (BAR) model was developed by Cowan and Staudte (1986) to analyze cell lineage data, a lot of research has been directed to BAR and its generalizations. Based mainly on the author's works, this paper is concerned with a contemporary review on the BAR in terms of an overview and perspectives. Specifically, bifurcating structure is extended to multi-cast tree and to branching tree structure. The AR(1) time series model of Cowan and Staudte (1986) is generalized to tree structured random processes. Branching correlations between individuals sharing the same parent are introduced and discussed. Various methods for estimating parameters and related asymptotics are also reviewed. Consequently, the paper aims to give a contemporary overview on the BAR model, providing some perspectives to the future works in this area.

Muscle Fatigue Assessment using Hilbert-Huang Transform and an Autoregressive Model during Repetitive Maximum Isokinetic Knee Extensions (슬관절의 등속성 최대 반복 신전시 Hilbert-Huang 변환과 AR 모델을 이용한 근피로 평가)

  • Kim, H.S.;Choi, S.W.;Yun, A.R.;Lee, S.E.;Shin, K.Y.;Choi, J.I.;Mun, J.H.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.127-132
    • /
    • 2009
  • In the working population, muscle fatigue and musculoskeletal discomfort are common, which, in the case of insufficient recovery may lead to musculoskeletal pain. Workers suffering from musculoskeletal pains need to be rehabilitated for recovery. Isokinetic testing has been used in physical strengthening, rehabilitation and post-operative orthopedic surgery. Frequency analysis of electromyography (EMG) signals using the mean frequency (MNF) has been widely used to characterize muscle fatigue. During isokinetic contractions, EMG signals present strong nonstationarities. Hilbert-Haung transform (HHT) and autoregressive (AR) model have been known more suitable than Fourier or wavelet transform for nonstationary signals. Moreover, several analyses have been performed within each active phase during isokinetic contractions. Thus, the aims of this study were i) to determine which one was better suitable for the analysis of MNF between HHT and AR model during repetitive maximum isokinetic extensions and ii) to investigate whether the analysis could be repeated for sequential fixed epoch lengths. Seven healthy volunteers (five males and two females) performed isokinetic knee extensions at $60^{\circ}/s$ and $240^{\circ}/s$ until 50% of the maximum peak torque was reached. Surface EMG signals were recorded from the rectus femoris of the right thigh. An algorithm detecting the onset and offset of EMG signals was applied to extract each active phase of the muscle. Following the results, slopes from the least-square error linear regression of MNF values showed that muscle fatigue of all subjects occurred. The AR model is better suited than HHT for estimating MNF from nonstationary EMG signals during isokinetic knee extensions. Moreover, the linear regression can be extracted from MNF values calculated by sequential fixed epoch lengths (p> 0.0I).

The Cusum of Squares Test for Variance Changes in Infinite Order Autoregressive Models

  • Park, Siyun;Lee, Sangyeol;Jongwoo Jeon
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.3
    • /
    • pp.351-360
    • /
    • 2000
  • This paper considers the problem of testing a variance change in infinite order autoregressive models. A cusum of squares test based on the residuals from an AR(q) model is constructed analogous to Inclan and Tiao (1994)'s test statistic, where q is a sequence of positive integers diverging to $\infty$. It is shown that under regularity conditions the limiting distribution of the test statistic is the sup of a standard Brownian bridge. Simulation results are given to illustrate the performance of the test.

  • PDF

Spectral Analysis of Heart Rate Variability in Electrocardiogram and Pulse-wave using autoregressive model (AR모델을 이용한 심전도와 맥파의 심박변동 스펙트럼 해석)

  • 김낙환;민홍기;이응혁;홍승홍
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.08a
    • /
    • pp.289-292
    • /
    • 2000
  • 선형 자귀회귀(AR) 모델을 근거로한 HRV 파워 스펙트럼해석은 비침습적으로 자율신경의 반응을 정량화하는데 폭넓게 사용된다. 본 연구는 단구간(2분 미만)의 심전도와 맥파 신호로부터 시계열 HRV의 파워스펙트럼을 추정한다. 시계열은 정상인을 대상으로 검출한 심전도와 맥파신호의 특징점 시간간격(RRI, PPI)으로부터 구하였다. 발생된 시계열은 다항식 보간법에 의해 AR모델에 적합하게 재구성하였으며, AR모델 계수는 Burg법에 의해 계산하였다. AR모델을 적용한 단구간의 심전도와 맥파의 심박변동에 대한 파워스펙트럼밀도는 저주파수(LF)와 고주파수(HF)에서 매끄러운 스펙트럼 파워를 나타내고 있다. 또한 동일한 피험자의 심전도와 맥파의 파워스펙트럼밀도를 비교한 결과 동일한 모양을 나타내었다.

  • PDF