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A New Proof of Efficiency of LAD Estimation in an
Autoregressive Process

Key-Il Shin!, Hee-Jeong Kang? and Songyong Sim3

ABSTRACT

In this paper we provide a new proof of the asymptotic distributions of
LAD estimators using the martingale limit theorem and show the efficiency
of LAD estimators in a stationary AR(1) model setting.
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1. Introduction

Let {X:} be a sequence of the first-order autoregressive process given by
X =BXi_1+¢€, Xo=0,t=1,...,n (1.1)

where 3 is a parameter of the model with |8] < 1 and {e:} is a sequence of
independent and identically distributed (4id) random errors with E(e;) = 0,
E(e?) = 0% < oo and unknown distribution function F. In data analysis, the
primary concern is to estimate the unknown parameter 8 in (1.1) from the data
and a typical estimation procedure is to use the least squares method. One of the
advantages of the least squares(LS) estimator is that the form of the LS estimator
is well known and easy to compute. The asymptotic theory of the LS estimator
is everywhere as in Theorem 8.2.1 of Fuller (1996). However, one of the disad-
vantages of the LS estimator is that when the error distribution is non-normal,
the LS estimator is asymptotically less efficient than other robust estimators.
The revolutionary computer technologies make it possible for robust estima-
tion procedures to play a more important role in data analysis. The least absolute
deviations(LAD) estimator ,3L Ap which is a solution of the following

n n
> IXt - ,BLADXt—l‘ = inf 3 |X;—BX;1] (1.2)
BER!
t=1 t=1
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can be a good alternative to the LS estimator. The conceptual simplicity and
the less sensitivity to extreme errors of LAD estimates make them worth being
considered. In fact, when the errors follow the double exponential distribution,
the LAD estimates are maximum likelihood estimates and hence asymptotically
more efficient than LS estimates. A cost for the robustness of LAD estimates is
computational difficulties. The form of LAD estimates is not easy to obtain and
the computation of them is more expensive than that of LS estimates. To cope
with this non-explicit problem of LAD estimates in (1.2), Koul and Zhu (1995)
developed a Bahadur-Kiefer type representations for LAD estimators in autore-
gression models. Kang and Shin (1998) also obtained a strong representation for
LAD estimators in (1.2) under some conditions such as the followings :

(A) Ele|**? < oo, for some § > 0.

(B) The d.f. F has a unique median at 0.

(C) F has a continuous density f in a neighborhood of 0 and f(0) > 0.

(D) For some ¢ > 0, |f(h) — £(0)] < ¢ |h|'/? for all h in a neighborhood of 0.
Kang and Shin (1998) have shown that under the conditions (A)-(D), the LAD

estimator BLAD in (1.2) can be written as

VA (Buap = B) 20(0) £ SXEy = =) Xesigle) + Ro (L3)
t=1 t=1

where sign(e;) = 1 or — 1 if ¢ > 0 or & < 0, respectively, and R, =
O (n~9/(4(2+9) (In n)3/*) with probability 1.

The main purpose of this study is to derive the asymptotic normality of LAD
estimates using the representation form in (1.3) and to show the efficiency of
them in situations when the error terms do not follow the normal distribution.
We have noticed that the asymptotic normality of LAD estimates has been shown
in Dunsmuir and Spencer (1991). The contribution of this paper is to give a new
way to derive the results using the Bahadur-Kiefer type representation in (1.3)
and the central limit theorem for martingale differences.

The remainder of this paper is organized as follows. In Section 2, we present
the asymptotic normality and the efficiency of LAD estimates in AR(1) models.
The martingale limit theory will play an important role in this paper. See Ha'l
and Heyde (1980) for more details on the martingale limit theory. Section 3
contains some Monte Carlo simulation results to support the efficiency of LAD
estimates obtained in Section 2.
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2. Asymptctic Normality

We begin with the main result of this paper to describe the limiting distribu-
tion of LAD estimates frap in (1.3).

Theorem 2.1. Under the conditions {A)-(D) in Section I, as n — oo,

Vi (Bran =) N<O’ GTOF 1;2[32) 21

where E(?) = 0% < oo and f(0) is the value of the density function at 0.

Proof. First,foreachn >1and 1 <t<n,let Woppn =31 1Znt = 1y ﬁ
Xi-1 sign(e¢) and Fp be a o-field generated by {e1,...,&}. Then it is obvious
that Z,; is Fp-measurable and the o-fields are nested ; Fpt—1 C Fpne. Also,
with the fact that Z,, = Wy s — Wy -1 and the following

E (Zn,n I fn,n—l) = %Xn—lE (Sign(an)) = %Xn—l (1 - 2F(0)) =0
because {e1,...,e,} are #id random errors and the distribution function F has a
unique median at 0, we can say that for each n > 1, {Z, .} is a sequence of mar-
tingale differences and {W,;}7, is a martingale sequence. For more details on
martingale, we refer the reader to Billingsley (1986). With the above arguments,
in order to obtain the limiting normal distribution in (2.1), we shall use the cen-
tral limit theorem for martingale differences. That is, we need to investigate
the conditions (ii) and (iii) of Theorem 5.3.4 in Fuller (1996) or the conditions of
Corollary 3.1 in Hall and Heyde (1980). Therefore we need to show the followings

n n X2__ ) 0_2
ZE(Z%,t|fn,t_1)=ZE( =L - sign(eq)? m,t_l) - o (22
t=1 t=1

forall e>0, Y E(Z2; I(1Zntl > €)|Fnp-1) — 0 (2.3)
t=1

where I(A) denotes the indicator function of a set A.

It is easy to prove (2.2) from the facts that {e,,...,e,} are iid random errors
and the distribution function F has a unique median at 0 and the following result
in Theorem 4.2 of Anderson (1959)

1 & o
p
EE X, B —. (2.4)
t=1
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For (2.3), we got the following, for all € > 0,

ZE 2 1(|Zng) > €) | Frp1)

bel .
= Z il -E{sign(st)2~l <|s1gn(6t)l vne ) | Frt— 1}
=1 " | X1l
| o))
< - X2 - E €1)° - >
< tz; i1 {mgn( 1) (|81gn(5t)| e ]
- el s )
n; b sign(e;) sign(ey)] e <ren o]
2
P g e
- 1_ﬁ2'0 = 0. (2.5)

The last result in (2.5) comes from (2.4) and

sign(e;)? - I <]sign(€1)| > /ne/ 1Iélta\,sxn lXt—ll) <1

and the dominated convergence theorem.

Therefore, with the results of (2.4), (2.5) and the central limit theorem for
martingale differences in Corollary 3.1 of Hall and Heyde (1980), we obtain that
as n — 0o,

2
ZZM ZX,: 18ign(eq) 4N (0, 1c_f—ﬁ2> (2.6)

Hence, the limiting normal distribution for LAD estimates Brap in (2.1) follows
from (2.4) and (2.6). O

With the result of Theorem 2.1 and the limiting normal distribution theory
of least squares estimates (denoted by BLs) as is given in Theorem 8.2.1 of Fuller
(1996) or Theorem 4.3 of Anderson (1959)

Xi-1 6t

S x —» N(0,1-5%), (2.7)

Vit (fus - B) = v BT
it is easy to obtain the asymptotic relative efficiency of LAD estimates Bran
relative to least squares estimates. We state the asymptotic relative efficiency
results of LAD estimates in the following corcllary.
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Corollary 2.2. Let the asymptotic relative efficiency of estimator Op relative
. 5 A2 Asym. Var@ .

to estimator 64, (ARE(6p,64)) be dfiﬁned cfs j’yz VZ:E&;;' Then, with the

conditions in Theorem 2.1, the ARE(Brap,Brs) of the LAD estimator in (1.3)

is 4£(0)%02.

Proof. The result comes from (2.1) and (2.7). O

Example 2.3 When the random errors {e;} in (1.1) follow N(0,0?), then, the
ARE(Brap,BLs) is 2/x. For the logistic distribution cases with E(e?) = o2 =
72a2/3 for an arbitrary scale parameter a > 0, the ARE(Brap,BLs) is w2/12.
For the double exponential distribution cases with E(e?) = 0% = 2/b* for an
arbitrary scale parameter b > 0, the ARE(Brap, ,@LS) is 2.

3. Simulation Studies

This section contains some Monte Carlo studies to support the theoretical
results on the asymptotic relative efficiency of LAD estimates. For this purpose,
we simulated the AR(1) model in (1.1) with |f] < 1 and n from 50 to 500.
With given values of 8 and n, we generated the sample {X:}, ¢t = 1,...,n,
under the conditions that {e;} is a sequence of 7td normal distribution N (0, o?)
or double exponential distribution with E(g;) = 0, E(e?) = o2. For each sample
of size n, we calculated the LS squares estimator and the LAD estimator using
the form in (2.7) and (1.3), respectively. The above process was iterated for
20,000 times and we recorded the empirical sample variance of LS estimates and
LAD estimates. The ratio of the empirical sample variance of LAD estimates
over that of LS estimates was compared with the theoretical asymptotic relative
efficiency in Example 2.3. These Monte Carlo experiments were performed in
Visual Fortran 5.0 with IMSL library 3.0 on Pentium II PC. The simulation
results are summarized in Table 3.1 and Table 3.2, and show that the empirical
results are almost equal to the theoretical values, as expected. This fact appears
clear as the sample size n increases. Therefore, we can see that LAD estimates
are more efficient than LS estimates for small samples as well when the random
errors follow the double exponential distribution.
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TABLE 3.1 The empirical ARE(BLAD,BLS) for normal distributions

n

B a? 50 100 150 200 250 300 400 500

1 0.61 0.62 0.63 0.62 0.62 0.63 0.63 0.63

4 0.61 0.62 0.63 0.63 0.62 0.63 0.64 0.64

-0.7 9 0.61 0.63 0.63 0.63 0.63 0.64 0.63 0.63
16 0.62 0.62 0.62 0.62 0.64 0.62 0.64 0.64

25 0.60 0.62 0.63 0.63 0.64 0.63 0.64 0.63

1 0.59 0.62 0.62 0.62 0.62 0.62 0.63 0.64

4 0.59 0.62 0.63 0.63 0.63 0.62 0.63 0.63

-0.5 9 0.60 0.61 0.62 0.62 0.63 0.62 0.63 0.63
16 0.59 0.61 0.62 0.62 0.63 0.63 0.63 0.63

25 0.60 0.62 0.63 0.62 0.64 0.63 0.63 0.63

1 0.58 0.62 0.62 0.63 0.63 0.63 0.63 0.63

4 0.60 0.61 0.62 0.62 0.63 0.63 0.63 0.63

-0.2 9 0.59 0.61 0.63 0.63 0.63 0.63 0.64 0.64
16 0.59 0.61 0.62 0.61 0.63 0.63 0.64 0.63

25 0.59 0.62 0.62 0.62 0.63 0.63 0.62 0.63

1 0.60 0.61 0.61 0.62 0.61 0.64 0.64 0.63

4 0.60 0.60 0.62 0.62 0.63 0.62 0.64 0.63

0.2 9 0.59 0.61 0.62 0.62 0.61 0.62 0.63 0.63
16 0.60 0.61 0.63 0.62 0.63 0.64 0.63 0.63

25 0.59 0.61 0.62 0.62 0.62 0.64 0.64 0.63

1 0.58 0.61 0.62 0.63 0.62 0.63 0.62 0.63

4 0.59 0.62 0.62 0.63 0.62 0.63 0.63 0.63

0.5 9 0.59 0.61 0.62 0.62 0.63 0.63 0.63 0.62
16 0.59 0.62 0.62 0.63 0.63 0.62 0.64 0.64

25 0.60 0.62 0.62 0.62 0.63 0.62 0.62 0.63

1 0.61 0.61 0.63 0.62 0.63 0.63 0.64 0.63

4 0.61 0.62 0.63 0.63 0.63 0.62 0.63 0.64

0.7 9 0.61 0.62 0.63 0.62 0.63 0.63 0.63 0.63
16 0.61 0.63 0.64 0.62 0.63 0.63 0.62 0.63

25 0.60 0.63 0.63 0.63 0.63 0.63 0.63 0.63
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TABLE 3.2 The empirical ARE(BLAD,BLS) for double exponential distributions

n

B o? 50 100 150 200 250 300 400 500

1 1.76 1.86 1.81 1.95 1.92 1.94 1.95 2.00

4 1.77 1.86 1.82 1.91 1.93 1.97 1.93 1.95

-0.7 9 1.80 1.86 1.88 1.91 1.96 2.01 2.01 1.94
16 1.75 1.82 1.88 1.91 1.93 1.92 1.96 1.96

25 1.78 1.91 1.89 1.93 1.92 1.97 1.94 1.95

1 1.73 1.85 1.87 1.91 1.92 1.95 1.89 1.97

4 1.71 1.84 1.88 1.93 1.94 1.95 1.96 1.97

-0.5 9 1.73 1.83 1.89 1.90 1.91 1.96 1.98 1.98
16 1.70 1.80 1.87 1.92 1.90 1.95 1.95 1.97

25 1.69 1.84 1.91 1.93 1.93 1.93 1.95 2.00

1 1.71 1.82 1.89 1.89 1.96 1.92 1.95 1.98

4 1.68 1.81 1.87 1.90 1.92 1.96 1.92 1.96

-0.2 9 1.67 1.84 1.89 1.92 1.91 1.94 1.96 1.98
16 1.70 1.82 1.80 1.93 1.95 1.91 1.96 1.95

25 1.66 1.80 1.90 1.94 1.92 1.93 1.96 1.94

1 1.69 1.82 1.90 1.91 1.89 1.94 1.92 1.94

4 1.68 1.84 1.85 1.93 1.92 1.93 1.97 1.96

0.2 9 1.68 1.80 1.88 1.93 1.93 1.95 1.97 1.98
16 1.66 1.80 1.87 1.90 1.92 1.95 1.95 1.94

25 1.70 1.84 1.80 1.91 1.91 1.95 2.00 1.95

1 1.71 1.85 1.86 1.94 1.90 1.94 1.97 1.98

4 1.70 1.83 1.81 1.91 1.95 1.94 1.94 2.00

0.5 9 1.67 1.85 1.89 1.92 1.93 1.93 1.93 1.96
16 1.68 1.83 1.92 1.90 1.97 1.92 1.90 1.96

25 1.71 1.84 1.88 1.90 1.93 1.99 1.95 1.96

1 1.76 1.87 1.92 1.93 1.96 1.93 1.96 1.96

4 1.75 1.86 1.89 1.98 1.94 1.95 1.95 1.96

0.7 9 1.74 1.86 1.94 1.92 1.93 1.93 1.96 1.96
16 1.76 1.88 1.80 1.94 1.95 1.94 1.96 1.96

25 1.74 1.87 1.87 1.91 1.93 1.93 1.97 1.95
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