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Abstract

In this paper variable bit rate VBR Moving Picture Experts Group (MPEG) coded
full-motion video traffic is modeled by a nonlinear time-series process. The threshold
autoregressive (TAR) process is of particular interest. The TAR model is comprised of a
set of autoregressive (AR) processes that are switched between amplitude sub-regions. To
model the dynamics of the switching between the sub-regions a selection of amplitude
dependent thresholds and a delay value is required. To this end, an efficient and
accurate TAR model construction algorithm is developed to model VBR MPEG-coded video
traffic. The TAR model is shown to accurately represent statistical characteristics of the
actual full-motion video trace. Furthermore, in simulations for the bit-loss rate actual
and TAR traces show good agreement.
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I . INTRODUCTION

To better support video services on high speed
and integrated networks an understanding of the
characteristics of VBR video traffic is required.
Video traces with low levels of scene activity
have exponentially decaying temporal correlations
with respect to time-lag (6,13]). Whereas video
traces with non-uniform scene activity have
frame sizes that change slowly over long time
intervals. The autocorrelation function (ACF) for
these types of video traces decay slowly or do
not reach zero even for long lag intervals (1,15].
In addition, abrupt jumps in the frame size
occur after a scene change. VBR video traces
with non-uniform scene activity follow no specific
probability distribution function (PDF) for the
number of cells in scene change frames and for
(7). VBR video traffic with
activity also  exhibit
long-term correlation {12,14,16]). To model video
traffic
switching between these levels of activity are
In this paper a new model for
MPEG-coded VBR video is
verified. Its usefulness in the characterization of

scene length

moderate  scene can

methods that efficiently capture the
required.
examined and
full-motion video is discussed.

The discrete autoregressive (DAR) model has
been used to model broadcast-video traces
generated by a DPCM-based coding algorithm
without motion compensation {7). In the DAR(1)
model, a finite-state Markov chain is used to
generate sequence of states. These states are
used to determine the frame sizes. This model
and

requires only that the mean, variance,

autocorrelation coefficient of intra-scene frames

be determined. The DAR(1) model was not found
to be
however.

accurate for all video traces tested,
For the video conference traces, the
DAR(1) proved to be a good source model.

A time-varying AR process was applied to
model full-motion video coded by a DPCM/DCT
scheme [18). The codec generates video stream
using a three-level motion classification, i.e.
high-,
Short-range dependence
sub-AR(1)
state~discrete-time Markov chain was used to
sub-AR(1) The
number of frames used to generate the model

low-motion activities.
(SRD)

processes. A

medium-, and

was modeled
using finite

choose between the models.
was 500 frames and two arbitrary thresholds
were selected from bit-rate histogram of the
video trace. Recently an enhanced Markov chain
based approach has been used with success to
analyze the traffic from single and two layer
MPEG-2 coders [15].

A scenic model (3) based on the DAR(1)
modeling approach has been used to model VBR
traffic.

differences

Scene changes were estimated using
of Dbits
consecutive frames rather than by using a

in the number between
Markov process. To discern the scene changes.
the VBR video trace was first passed through a
median-filter having a length of 0.5 seconds.
Using the output, the short-time mean was
calculated using the 5-frame average-filter. The
short-time average value exhibits a significant
change in the value at a scene boundary. Tests
of the model

showed that for large buffer sizes the scenic

using full-motion video traces
model estimated cell-loss probability —more
accurately than the DAR(1) model. A self-similar
model was developed to estimate the long-range
dependence (LRD) and was used in conjunction
with SRD for VBR full-motion video traces [8).
In this work, self-similar traffic models were
used to match the LRD, SRD, and probability
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density function (PDF). In queueing simulations
the model underestimated cell-loss rates when
compared to the actual trace. In (10} presence of
a scene change in an MPEG video trace was
determined using the difference in the frame bit
count between two consecutive I-frames. Two
_thresholds were used as a measure of the scene
activity. Intra-scene fluctuations for I-frames
were estimated using an AR(2) process. Each
frame type was fit to a lognormal distribution
using the histogram. Composition of each frame
type according to group of picture (GOP) format
generated a video trace possessing the
characteristics of VBR video traffic.

In this paper a nonlinear time-series modeling
method is developed for VBR MPEG video traces.
The TAR model (17] consists of a number of AR
models. Each AR model has its own correlation
structure and model order. Switching of the AR
models is dependent on amplitude thresholds and
the amplitude of a time-delayed sample.
Therefore the conditions for transitions between
the sub-regions is deterministic. The best TAR
model is selected from evaluations of all possible
TAR models realized from a given set of
thresholds and time~delays. A new TAR model
construction algorithm is examined which uses a
minimum variance criterion for model selection.
The algorithm significantly reduces computational
cost and accurately finds the best TAR model.

The structure of the MPEG-coded full motion
video trace is introduced in Section 2. The TAR
model construction algorithm is presented in
Section 3. Section 4 is devoted to the TAR
modeling of a VBR MPEG-coded full-motion
video trace. In section 5, bit-loss rates are
different  buffer

transmission speeds using the

estimated for sizes and
leaky bucket
algorithm. Finally Section 6 is devoted to

conclusions.

. VBR MPEG VIDEO TRACE

A Dbits per frame trace of an MPEG-1 coded
video sequence is shown in Fig. 1. For different
amplitude ranges, piecewise-constant frame sizes
are observed. These constant regions may extend
hundred

changes are

several frames. Large amplitude

also observed at intermittent
intervals. Scene changes generate large jumps in
The
frames in a scene are strongly correlated. The
figure shows the bit count for frames 31,000
through 33,000 for the full-motion video James

Bond. Fluctuations in the trace are necessary to

the frame size. bit rates in successive

retain constant video quality (2).

In the case of the MPEG coding method (11},
three types of frames are used to code contents
of the video. These are the I, P and B frames.
The I-frames use intra-frame coding based on
the discrete transform and entropy coding. The
include motion

P-frames compensation from

previous I- or P-frames. The B-frames include

bi-directional motion compensation. Typically,
I-frames require more bits than P-frames. The
B-frames have the  lowest  bandwidth
requirement. After encoding is completed,

deterministic and periodic frame sequences are
generated. This sequence
pictures (GOP) format.

is called group of
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Fig. 1. Representative sample path for a typical MPEG
trace
' 250000 T T T T
The MPEG-1 trace data used in this paper is
available to public for research purpose from {4). 200000 - -
All the traces obtained from (4] have rather
active scene changes. The traces for news and _ 150000 -
sports have more frequent jump bit-rates than E
the movie sequences. The maximum number of ™ 10000 |- -
frames in a trace is 40,000 which is equal to
about 30 minute-long video sequence for a source 50000 - -
frame generation rate of 30 frames per second. :
. . 0 ] 1 1 ]
The GOP pattern consists of 12 frames as having 0 00 10000 150000 200000 250000
a pattern IBBPBBPBBPBB. The traces are xin)
encoded color images having a maximum of (b)
Fig. 2: (a)PDF of MPEG video trace

12-bits per pixel. The picture size is 384x288
pixels (5].

The statistics of the MPEG traces are listed in
Table 1. The peak to mean ratio is a rough
measure of the degree of variability present in
the trace. In all cases, the ratio is large. The
PDF for the James Bond trace has a narrow
This peak
primarily due to the B-frames, whereas the long

peak near 24000 bits per frame.

tail includes contributions from I- and P-frames.
The highest bit-rates come from I-frames.

(b)Scatter diagram of 1 frame

The one-lag scatter diagram of the I-frames,
based on the 12-frame period of the GOP format,
is shown in Fig. 2(b). A positive correlation with
The
slope of the linear regression line through the

a single cluster is observed in the figure.

cluster has a value of nearly unity. This implies
that I-frames remain close in amplitude at
one-lag. Table 1 also demonstrates that different
video sequences using a single video coder can
varying This

introduce problems in

generate  statistically traces.

state-of-affairs may
providing quality of services (QoS) and reliable
network performance. Thus a model is needed to

characterize efficiently and accurately the degree
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of activity in the video trace.

Mean
Scene Type | . . Variance | Peak/Mean
(bits/frame)
Star Wars 9313 1.7x10° 13
TV news 15358 3.8x10° 12
James 24308 6.6x10° 10
Bond
Soccer 25110 4.5x10° 8
game
Terminator 10905 1.0x10® 1

. The TAR Model

The TAR model
process comprised from a number of linear

is a nonlinear time-series

sub-models. Each amplitude switched AR process
is constructed for specific amplitude range or
sub-region. The AR model to be used at time #
is determined by the amplitude x(#— D) where
D denotes a time-delay. Also the amplitude
thresholds are used to determine which AR
model is to be activated. The TAR model for
sub-region m is defined as

1(n) = ad™ + 2afm)x(n—l)+u("‘)(n) ..... (1)

if R;<x(n—D) < Ry. The variable x is
the time-series observed, m is the index denoting

the sub-region, a,~(m) are coefficients of the

m(n)

model for region m, %« is a Gaussian

distributed noise with N(O: 02(,,,)), R,, the
denotes threshold amplitude, and p,, represents

sub-AR model order in the region m.

The analysis will proceed by first splitting the
video trace in I, B and P traces. Each will be
Once the
determined, the time-series can be constructed

modeled  separately. model is
following the GOP format. In the next section,
the sub-AR model is characterized by estimating,

a,g'") and u#™(#). A new algorithm for the

TAR model construction is presented in Section

3.2. Criteria for the selection of R,,., P, and D

are also introduced in this section.

3.1 Characterization of the Sub-Region
Each sub-region is characterized in terms of
the coefficients and residual variance of the
sub-AR process. The sub-region is classified by
thresholds
amplitude. Fig. 3 illustrates j-th classification in

amplitude and a time-delay

the sub-region m. Current point x(n) is
determined to be the j-th realization for the
sub-region m since x{(n-D) shown as X in the
R, and

figure is in the threshold range

R, 1. The x(n) is a realization of random

process having a dependence on p,, lagged
time-series points. Hence we can denote the

classified time-series points as Eq.(2)

xP=x(n), P =x(n—1), -, x,_(”=x(n—17,,.)'“(2)

where xé’)is a measured value from the p,,

lagged past data points at the occurrence j.
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Fig. 4: Total N,, realizations in the region m

Fig. 4 shows realizations of a random process
according to their order of occurrence for the

region m. The total number of realizations is
N,, and the model for each sequence uses p,,
lagged values of x. In the bottom line of the
figure, <xf M)) denotes the ensemble average of

the random process at each lag point i. The

(m)

estimation of @; proceeds by minimizing

squared error between the estimated and

measured value of x(n). This error j, in the

sub-region m can be written as
(m) (my _ S (m) ()
ay” = <xp™ —;ai"’ (o™ eennes (3

Setting the partial derivative of J,, in terms

(m)

of ap ~ equal to zero yields. where <x,(’")> is

(m)

the ensemble average. Substituting @ into

Eq.(3) and differentiating the result with respect

(m)

to a; yields the following correlation

structure for the sub-region m, where

©"(k, i) is an ACF. Where k and i denote

different lags up to the order p, and

y,('")=x,§])—<x,g)>. The function @(%, )
represents correlation of the lags i and k

resulting from averaging over the realizations.

The TAR model will possess a different
@™ (k,7) for each sub-region.
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Fig. 5: Total N,, realizations in the region m
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3.2 Selection of the Best Model
A method to determine the optimal R, . Dum

and D is needed to select the best TAR model
among all possible cases. The classical method
Akaike
for the TAR model
In addition to the AIC for
modeling the full-motion video trace,

used in time-series studies uses the
information criteria (AIC)
construction (17].
a new
model selection criterion is implemented to
accurately evaluate the candidate TAR models.

The best TAR model is selected by composing the
R,,. p, and D that yield the
closest fit to the data.

In the TAR model construction,

parameters

effort is
required to obtain the sub-AR medels. Reducing
the number of sub-regions evaluated can reduce
the computational cost. This can be done while
retaining model accuracy. Given a set of K+1
threshold amplitudes, an AR model is required in

the interval with R,, { R+, for h=(1, K-m).

The number of AR model
thresholds

increases as the

increase. Let the
RyK R (- KRy
where Ry=0 and R;=P. The P is a value

greater than the peak rate of the MPEG video
trace. The number of TAR model to be evaluated

for k threshold-points between Ry to R, is

number  of

thresholds be defined as

k—1 taken k at a time. By summing all cases,
the number of sub-AR model will increase as
O(2K). One can reduce the number of sub-AR
models required by only evaluating
representative models for the sub-regions once.
Since the amplitude domains of some of sub-AR
models are shared by the different TAR models,
the number of sub-AR model will be reduced
without repeated revaluation of sub-AR models
in each TAR model. The sub-AR models to be
evaluated are decreased to O(K2) (9) using

representative sub-AR models.

The conventional criterion for determining the
best TAR model is the AIC. In such a case, one
must evaluate and compare the AIC from O(2K)
candidates. Typically one would select the model
having the minimum AIC. However the AIC is of
limited use in choosing the best model for video
traffic.
fluctuations in the video traces, the variance of

Due to the large and intermittent
the residual used in the AIC is not a reliable
discriminator. We will introduce sum of weighted
variance as the criterion for selecting the best
TAR model. Referring to the Gaussian noise
term in Eq.(1), the residual of the TAR model
can be represented as a mixture of Gaussian
distributed random variables having a stationary
(19). The TAR model

having the minimum 7 'p is selected for the best

marginal distribution

model. The AIC is used for order selection in the
sub-AR model. For the sub-region m. Selected

model order is p,, for region m if the AIC(m,

D) has the minimum AIC among the pmax

cases. Therefore a suitable TAR model uses only
stable AR processes.

Fig. 5 illustrates the TAR model construction
algorithm. Since the optimal thresholds are
initially unknown, the histogram and scatter
diagram of MPEG trace are used to select the
initial thresholds. High activity regions in the
in the
diagram can provide useful information for the
initial threshold points.

technique for determining the thresholds based

histogram or dense clusters scatter

More elaborate search

on K-mean clustering and dynamic invariance
have been used to analyze VBR trace(15]. We
found that the initial threshold selection using
equally spaced amplitude intervals is reliable for
the MPEG traces used here.

The maximum D and pgax are set to 5

throughout this paper. Index counters used in

the algorithm are p, t and D. The p and D
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index respectively the sub-AR model order and
time—delay. Initial value of D is set to 1 and it
increases until D reaches to 5. The combination

of sub-AR models for a 7 p requires recursive

function calls in the simulation program to
efficiently retrieve the representative AR models
(9). The L(K) in the figure represents the total
number of representative sub-AR models in

terms of the maximum threshold point K, and t

is index counter for L(K). Thus L(K)= O(K?).
At each p iteration step x(n) is classified and

a,gm) estimated in the given threshold interval,

R,, to

takes the most time.

R, 4+, This portion of the algorithm

IV. Model for a Ful-Motion Video
Trace

In this section, the TAR modeling procedure is
applied to VBR MPEG video data shown in Fig.
1. TAR models are constructed for each frame
types of I, P and B. Composition process for the
trace using the TAR models is implemented
using the GOP pattern. The number of data
points for I-, P- and B-frames are 3334, 10000
and 26666 respectively. The initial threshold
points are equally spaced.

Thresholds for I-, P- and B-frame types are
respectively selected as (0,50K ,60K.---,200K,

Pp). (0.20K.30K,---,120K, Pp) and {0.6K.8K.--
- 40K. Pg) where P; ., Pp and Ppg are values

greater than the peak rates for each frame type.
Using the algorithm developed in the previous
section, the optimal TAR models were retained

for each frame type and shown in Table 2.

T D; | K; TP Dp| Kp TP Dg| Kp

1001 2 5 [1.00] 2 8 |100] 2 6

1011 4 6 [105] 2 6 (100 2 7

1051 4 7 {1.10] 4 9 1101 2 7

1.091 2 6 |110]| 3 9 [1.03}f 3 5

112 4 8 |110]| 2 5 |1.04| 4 5

(Tabel. 2>: The selected optimal TAR models for
each frame type

The five best TAR models for each frame type

are shown in the table in terms of the

normalized T'p. All Tp are normalized by the

minimum value of its class. For the best cases
in each frame type, D was found equal to 2.

The k represents the number of threshold

between Ky and Ry for each frame type.

Some sub-region selections could not be
evaluated due to the lack of a sufficient number
of data points. The sub-AR models for the best

TAR models in each frame type have sub-AR

model orders as (1,4.1.4.1.4). (1,2,5.1,3.4,1.4
1), and (1141515 for I, P and B
respectively. From left to right, the sub-AR

model orders are for intervals of lower thresholds
to higher thresholds. In total 22 linear models
are used for the MPEG full-motion video trace.

A MPEG trace was generated using the best
All sub-AR
models in each frame type have residuals of

TAR models of each frame type.

Gaussian random variables with zero mean and

(m)

standard deviation o, Note that different

residual series are obtained for each frame type
Finally, a synthesis
after the
composition process of frame types generated by
the best TAR models.

The @Q plot and PDF are used to compare
the synthesized and actual traces. In the Q-Q

and for each sub-region.

video trace x(n) was attained
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plot comparison shown in Fig. 6, deviation from
the line is observed in the amplitude range
greater than 99.99% of the highest amplitude in
the actual trace. This range is corresponds to
the I-frames occurring at peak bit-rates. PDF
comparison shown in Fig. 7 demonstrates
~accurate TAR modeling below a frame size of
150,000 bits.

The TAR model captures the SRD in the local
amplitude regions using low order AR models.
Transition between the local regions depends on

The

x (n) composed using the TAR model captures

the thresholds and a time-delay amplitude.

the LRD of actual video trace. The deterministic
composition of each frame class can allow the
TAR model to capture the LRD of the MPEG
stream. The ordering between frame classes (I,
P, B) has an impact on the LRD of the TAR
model. Reference (10) has shown that LRD in
the MPEG trace is captured by the composite of
type that is
independent random processes. Fig. 8 shows the

each frame modeled using

results of ACF comparison.

00000 Y T T T
James_Bond ——
‘TAR ©
230000 - —
200000 |- _/_
- o
P
ﬁ 1so000 |- -
=
160000 - -
50000 |- _
° 1 1 L 1
< 50000 100000 150000 200000 250000
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Fig. 6: Q-Q plot for actual vs. TAR trace
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Fig. 7: PDF for actual vs. TAR traces

V. Bit-Loss Rate Comparisons

The leaky bucket algorithm (12,15) will be
used to estimate bit-loss rates. The number of
bits x (n) will be the input to the queue and the
clock will be the frame counter. The maximum
number of bits serviced during a frame period
will be denoted by the constant drain rate. The
drain-rate S can be retrieved dividing by the
time duration of each frame. In our case this
will be 1/30 of a second. The maximum capacity
of the buffer is M bits.

The bracket expression represents the number
of bits serviced using a first-in-first-out (FIFO)
discipline in the interval between n-1 and n.
When B(n) exceeds the buffer capacity M the
number of bits exceeding the threshold are lost.
Two parameters will be used in the presentation
of the results. The first will be the bucket size
given in seconds which are egual to the M/S dt
where dt is equal to 1/30. The second parameter
is the ratio of the drain rate S/dt and the
average rate S/dt. The average rate is a fixed
parameter using the long-term average in the
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video sequence.

The horizontal axis reflects the values of S/ S
and the vertical axis denotes the bit-loss rates.
For bit-loss rates less than 10-3 the TAR model
underestimates the loss rates. The reason for

disagreement is the improper modeling of
outliers, which correspond to frames having large
bit-counts.

As we have seen in the Q-Q plot comparison
between actual and TAR models, less than or
equal to 0.01% of the jump arrivals in [ frames
was not properly modeled. We tested the outliers
effect on the estimation of the bit-loss rates
using the TAR model. Only 5 frames whose bits
are greater than 189,232 in the actual trace
belong to the range of greater than 99.99%. To
test this outlier effect, we removed the 5 frames
whose bits are greater than 189,232 in the
actual trace and measured the bit-loss rates
using the actual and TAR traces with the bucket
size 0.01 seconds. The result is presented in Fig.
10. The bit-loss rates for the actual trace, the
trace with the 5 frames removed, and the TAR
A good

is observed

trace is compared in the figure.

agreement of bit-loss estimation
between the trace with the 5 frames removed

and TAR trace.

V1. Conclusion

The results presented in this paper
demonstrated that the developed TAR modeling
process is effective
traffic. The QQ plot and PDF were well
matched to the actual VBR MPEG video trace.
Bit-loss rates were accurately predicted using

in modeling VBR video

the trace composed from the TAR models of each

frame type with the exception of the amplitude
range belonging to outliers. Unmodeled high rate
frames, which were only 5 frames among 40,000
shown to greatly impact the
Due to these

estimates

frames, were
bit-loss at high drain rates.
bit-loss

observed at drain rates which are greater than

frames, errors in were
six times average bit rate at a bucket size of 2
seconds.

The method developed in this paper estimates
accurate  modeling  parameters such  as
thresholds, and sub-AR model

orders. The optimal thresholds and a time-delay

a time-delay,

point provide accurate models for each frame

type. The model orders for the stationary
sub-AR models capture the SRD presented in the
amplitude ranges. The switching between
sub-regions is deterministic due to the
thresholds and the time-delay point.
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