• Title/Summary/Keyword: Automation in Construction

Search Result 556, Processing Time 0.026 seconds

A Construction of HA System that introduce Home Network of PLC base in existing environment (PLC 기반의 Home Network를 기존환경에 바로 도입 가능한 Home Automation System 연구)

  • Shin Kyung-Chul;Oh Young-Sun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2005.05a
    • /
    • pp.320-328
    • /
    • 2005
  • Government is supporting development of home networking. But, this new system is much expensive to introduce in the home. And limit for establishment is so many in the home. Therefore, in this paper, Present direction of home automation system that can have high efficiency into low expense, induction of automation system is easied in the home. Also, install can be easy and do remote control in PC, HP, PDA because use PLC or HN RF, DB.

  • PDF

A Proposal on the Consulting Model for Efficient Construction of Material Handling Automation System : Focused on K Company's Case (물류자동화 시스템의 효율적 구축을 위한 컨설팅 방법론 제안 : K기업의 사례를 중심으로)

  • Ko, J.H.;Cho, J.H.;Oh, H.S.;Shim, S.C.;Ryu, J.H.;Lee, S.J.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.202-211
    • /
    • 2015
  • Companies build the factory automation system to improve management effectiveness and productivity as prime strategies for sustainable growth. But most companies undergo various trials and errors while carrying out the project without elaborate preparation stage for factory automation. In this study, we tried to verify what factors are critical to effectively building distribution automation system, which is a branch of factory automation system. A consulting model for setting up a Material Handling Automation System by utilizing the Stage-Gate Process, which is product development process was studied. 29 material handling automation projects carried out between the year 1990 to 2013 at K-Company were selected. Interviews with the project managers, operators and maintenance personnels, various records and current status of the projects were used as data for structural equations based on the Milan consulting model and existing researches of factory automation, CIM for material handling automation. Creating effective basis of production, material handling system and energy saving system with expert review, when preparing a material handling automation project, help promote the project planning thus contributing to the performance of the resulting system, which appears though rather weakly in our data. Also the effect of material handling automation can be enhanced through sufficient and effective links to the relevant environments such as production logistics management and automated warehouses. More detailed planning characteristics of project promotion or some time-series data of effective Material Handling Automation System could enhace furthur studies. We propose a consulting model for setting up an efficient material handling automation system.

Simulation and Analysis of Wildfire for Disaster Planning and Management

  • Yang, Fan;Zhang, Jiansong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.443-449
    • /
    • 2022
  • With climate change and the global population growth, the frequency and scope of wildfires are constantly increasing, which threatened people's lives and property. For example, according to California Department of Forestry and Fire Protection, in 2020, a total of 9,917 incidents related to wildfires were reported in California, with an estimated burned area of 4,257,863 acres, resulting in 33 fatalities and 10,488 structures damaged or destroyed. At the same time, the ongoing development of technology provides new tools to simulate and analyze the spread of wildfires. How to use new technology to reduce the losses caused by wildfire is an important research topic. A potentially feasible strategy is to simulate and analyze the spread of wildfires through computing technology to explore the impact of different factors (such as weather, terrain, etc.) on the spread of wildfires, figure out how to take preemptive/responsive measures to minimize potential losses caused by wildfires, and as a result achieve better management support of wildfires. In preparation for pursuing these goals, the authors used a powerful computing framework, Spark, developed by the Commonwealth Scientific and Industrial Research Organization (CSIRO), to study the effects of different weather factors (wind speed, wind direction, air temperature, and relative humidity) on the spread of wildfires. The test results showed that wind is a key factor in determining the spread of wildfires. A stable weather condition (stable wind and air conditions) is beneficial to limit the spread of wildfires. Joint consideration of weather factors and environmental obstacles can help limit the threat of wildfires.

  • PDF

BIM-based Lift Planning Workflow for On-site Assembly in Modular Construction Projects

  • Hu, Songbo;Fang, Yihai;Moehler, Robert
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.63-74
    • /
    • 2020
  • The assembly of modular construction requires a series of thoroughly-considered decisions for crane lifting including the crane model selection, crane location planning, and lift path planning. Traditionally, this decision-making process is empirical and time-consuming, requiring significant human inputs. Recently, research efforts have been dedicated to improving lift planning practices by leveraging cutting-edge technologies such as automated data acquisition, Building Information Modelling (BIM) and computational algorithms. It has been demonstrated that these technologies have advanced lift planning to some degree. However, the advancements tend to be fragmented and isolated. There are two hurdles prevented a systematic improvement of lift planning practices. First, the lack of formalized lift planning workflow, outlining the procedure and necessary information. Secondly, there is also an absence of a shared information environment, enabling storages, updates and the distribution of information to stakeholders in a timely manner. Thus, this paper aims to overcome the hurdles. The study starts with a literature review in combination with document analysis, enabling the initial workflow and information flow. These were contextualised through a series of interviews with Australian practitioners in the crane-related industry, and systematically analysed and schematically validated through an expert panel. Findings included formalized workflow and corresponding information exchanges in a traditional lift planning practice via a Business Process Model and Notation (BPMN). The traditional practice is thus reviewed to identify opportunities for further enhancements. Finally, a BIM-based lift planning workflow is proposed, which integrates the scattered technologies (e.g. BIM and computational algorithms) with the aim of supporting lift planning automation. The resulting framework is setting out procedures that need to be developed and the potential obstacles towards automated lift planning are identified.

  • PDF

Development of the Performance Analysis Model Based on Research and Development Phases for Automated Construction Equipment

  • Lee, Jeong-Ho;Kim, Young-Suk
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.2
    • /
    • pp.1-17
    • /
    • 2012
  • The automated construction machines have been recently developed to help solve the construction industry problems that significantly affect labour, productivity, quality, and profit. Despite the importance of performance analysis to commercialize the automated construction machines, previous studies have mainly concentrated on developing hardware and software of automated construction machines. This research now focuses on two objectives: (1) to propose an analysis model which can measure productivity, quality, and safety improvement rate of automated construction machines based on research and development (R&D); and (2) to develop a performance analysis system which will aid the evaluator in analysing the performance of automated construction machines. Finally, it is anticipated that the effective use of the performance analysis model and computerized system will ably develop the high-performance, automated construction machines and establish the marketing strategy to increase not only the commercial value but also the upkeep and development of construction machines.

Conceptual Design of Ground Control Point Survey Automation Technology Using Drone (드론을 활용한 지상기준점 측량 자동화 기술의 개념디자인)

  • Jae-Woo Park;Dong-Jun Yeom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.4_2
    • /
    • pp.687-696
    • /
    • 2023
  • In recent construction sites, digital maps obtained through drone photogrammetry have garnered increasing attention as indispensable tools for effective construction site management. the strategic placement of Ground Control Points (GCPs) is crucial in drone photogrammetry. Nevertheless, the manual labor and time-intensive nature of GCP surveying pose significant challenges. The purpose of this study is to design the concept of automated GCPs survey technology for enhancing drone photogrammetry efficiency in construction sites. As a result, the productivity of the automated method was analyzed as 118,894.7㎡/hr. It is over 25% productivity improvement compared to traditional methods. In future studies, economic analysis of automated methods should be studied.

Severity Analysis for Occupational Heat-related Injury Using the Multinomial Logit Model

  • Peiyi Lyu;Siyuan Song
    • Safety and Health at Work
    • /
    • v.15 no.2
    • /
    • pp.200-207
    • /
    • 2024
  • Background: Workers are often exposed to hazardous heat due to their work environment, leading to various injuries. As a result of climate change, heat-related injuries (HRIs) are becoming more problematic. This study aims to identify critical contributing factors to the severity of occupational HRIs. Methods: This study analyzed historical injury reports from the Occupational Safety and Health Administration (OSHA). Contributing factors to the severity of HRIs were identified using text mining and model-free machine learning methods. The Multinomial Logit Model (MNL) was applied to explore the relationship between impact factors and the severity of HRIs. Results: The results indicated a higher risk of fatal HRIs among middle-aged, older, and male workers, particularly in the construction, service, manufacturing, and agriculture industries. In addition, a higher heat index, collapses, heart attacks, and fall accidents increased the severity of HRIs, while symptoms such as dehydration, dizziness, cramps, faintness, and vomiting reduced the likelihood of fatal HRIs. Conclusions: The severity of HRIs was significantly influenced by factors like workers' age, gender, industry type, heat index , symptoms, and secondary injuries. The findings underscore the need for tailored preventive strategies and training across different worker groups to mitigate HRIs risks.

An Analysis of 3D Printing Activities for Vertical Structure of Small Building (소형건축물 수직골조 대상 3D 프린팅 액티비티 분석)

  • Park, Hyeong-Jin;Ju, Gi-Beom;Seo, Myeong-Bae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.308-309
    • /
    • 2018
  • Construction automation is needed to improve construction productivity. 3D printing is a key technology of the 4th industrial revolution, and when applied to the construction field, the ripple effect is very large. In this paper, we propose a 3D printing method that can predict the 3D printing process and estimate the construction duration for each process. Through literature review and expert consultation, eight 3D printing activities for structure work were derived. Construction duration and cost estimation for each activity will be needed in the future research.

  • PDF

A Methodology of Open BIM-based Quantity take-off for Schematic Estimation of the Frame Work in Early Design Stage

  • Hansaem Kim;Jungsik Choi;Inhan Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.419-425
    • /
    • 2013
  • Recently AEC industry has required construction automation according to becoming large and complex. Thus BIM-based construction project is increased and used in whole fields of AEC industry. Quantity take-off and estimation fields are important factor for decision-making in conceptual and schematic design stages of construction projects. The purpose of this study improves reliability of the estimation through QTO based on Open BIM. Scope and method to apply QTO is to select conceptual design stage through LoD(Level of Detail) in AEC field and to extract information from BIM model through analysis of IFC structure. This study proceeds three step to make BIM model and check the model quality and calculate QTO. The methodology of QTO using IFC is to verify of result in this study and expects utilizing in design stage of construction projects. The result from this study is expected to decrease the risk factor and time of estimation in the project early phase through improving reliability of schematic estimation.

  • PDF

A Basic Study of Automatic Rebar Length Estimate Algorithm of Columns by Using BIM-Based Shape Codes Built in Revit (BIM 기반 형상코드를 이용한 기둥 철근길이 자동 산정 기초 연구)

  • Oh, Jin-Hyuk;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.21-22
    • /
    • 2023
  • In reinforced concrete constructions, reinforcing bar generates more CO2 per unit weight than other construction materials. In particular, cutting and bending rebar is the main source of rebar waste in the construction industry. Rebar-cutting waste is inevitable during the construction of a reinforced concrete structure since the rebar is not manufactured as designed. Large amounts of waste can be avoided by utilizing optimal cutting patterns and schedules. This research provides a fundamental analysis of the automatic calculation of column rebar length using BIM-based shape codes to minimize cutting waste to near zero. By employing this approach in practice, it is possible to minimize the rate of rebar-cutting waste, reduce costs, shorten construction duration, and reduce CO2 emissions. In addition, the development of this research will serve as a clue for the development of BIM-based rebar layout automation algorithms.

  • PDF