• Title/Summary/Keyword: Arbitrary Waveform Generator

Search Result 21, Processing Time 0.025 seconds

Co-Simulation for Systematic and Statistical Correction of Multi-Digital-to-Analog-Convertor Systems

  • Park, Youngcheol;Yoon, Hoijin
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.1
    • /
    • pp.39-43
    • /
    • 2017
  • In this paper, a systematic and statistical calibration technique was implemented to calibrate a high-speed signal converting system containing multiple digital-to-analog converters (DACs). The systematic error (especially the imbalance between DACs) in the current combining network of the multi-DAC system was modeled and corrected by calculating the path coefficients for individual DACs with wideband reference signals. Furthermore, by applying a Kalman filter to suppress noise from quantization and clock jitter, accurate coefficients with minimum noise were identified. For correcting an arbitrary waveform generator with two DACs, a co-simulation platform was implemented to estimate the system degradation and its corrected performance. Simulation results showed that after correction with 4.8 Gbps QAM signal, the signal-to-noise-ratio improved by approximately 4.5 dB and the error-vector-magnitude improved from 4.1% to 1.12% over 0.96 GHz bandwidth.

Development of Digital Chirp Pulse Generator for Fine Resolution Image Radar (고해상도 레이더용 광대역 디지털 첩 펄스 발생기 실험모델 개발)

  • 강경인;임종태;신희섭;전재한
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.8
    • /
    • pp.104-108
    • /
    • 2006
  • There are range and azimuth direction resolution of synthetic aperture radar on the aircraft or satellite. Wide bandwidth chirp pulse generation technology is prerequisite for SAR image with fine resolution. There are two kinds of digital chirp pulse generation technology as arbitrary waveform generator(AWG) and direct digital synthesizer(DDS). In this paper, we design and implement a digital chirp pulse generator to generate 300MHz wide bandwidth linear FM chirp pulse for the fine resolution image with direct digital synthesizer. Implemented chirp pulse generator can be useful for the SAR sensors to make 50cm range resolution image.

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System using the PXI Modules (PXI모듈을 이용한 랩뷰 기반 시간-주파수 영역 반사파 실시간 계측 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.336-338
    • /
    • 2006
  • One of the important topics concerning the safety of electrical and electronic system is the reliability of the wiring system. The Time-Frequency Domain Reflectometry(TFDR) is a state-of-the-art system for detection and estimation of the fault on a wiring/cable. The purpose of this paper is to implement a Labview based TFDR Real Time system though the instruments of PCI extensions for Instrumentation(PXI). The TFDR Real Time system consists of the five parts: Reference signal design, signal generation, signal acquisition, algorithm execution, results diplay part. In the signal generation and acquisition parts we adopt the Arbitrary Waveform Generator(AWG) and Digital Storage Oscilloscope(DSO) PXI modules which offer commonality, compatibility and easy integration at low cost. And execution of the PXI modules not only is controlled by the Labview programing but also the total system process is executed by the Labview application software.

  • PDF

Testing and Self Calibration of RF Circuit using MEMS Switches

  • Kannan, Sukeshwar;Kim, Bruce;Noh, Seok-Ho;Park, Se-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.882-885
    • /
    • 2011
  • This paper presents testing and self-calibration of RF circuits using MEMS switches to identify process-related defects and out of specification circuits. We have developed a novel multi-tone dither test technique where the test stimulus is generated by modulating the RF carrier signal with a multi-tone signal generated using an Arbitrary Waveform Generator (AWG) with additive white Gaussian noise. This test stimulus is provided as input to the RF circuit and peak-to-average ratio (PAR) is measured at the output. For a faulty circuit, a significant difference is observed in the value of PAR as compared to a fault-free circuit. Simulation is performed for various circuit conditions such as fault-free as well as fault-induced and their corresponding PARs are stored in the look-up table. This testing and self-calibration technique is exhaustive and efficient for present-day communication systems.

  • PDF

Design of the Single-loop Voltage Controller for Arbitrary Waveform Generator (임의 파형 발생기를 위한 단일 루프 전압 제어기 설계)

  • Kim, Hyeon-Sik;Chee, Seung-Jun;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.313-314
    • /
    • 2015
  • 본 논문은 3상 4선식 인버터를 이용하여 임의의 전압 파형을 발생하기 위한 우수한 성능의 폐루프 전압 제어기를 제안하고 제어 이득 설정 방법을 제시한다. 먼저, 임의 파형 발생기에 사용된 3상 4선식 인버터 및 LC 필터 회로 구조를 분석하고, 이를 기반으로 한 전압 제어기 구조를 제안한다. 제안된 전압 제어기는 폐루프 형태의 PI 전압 제어기를 사용하고, 과도 특성 개선 및 부하 전류로 인한 전압 왜곡 방지를 위해 인버터 전류 및 부하 전류 정보를 전향 보상에 사용한다. 실험을 통해 전압 지령에 대한 응답 특성이 향상되는 것을 확인할 수 있다.

  • PDF

Power Quality Measurement for LED-based Green Energy Lighting Systems (LED 기반 그린에너지 조명시스템을 위한 전력품질 측정)

  • Yu, Hyung-Mo;Choi, Jin-Won;Choe, Sangho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.174-184
    • /
    • 2013
  • For the successful R&D and deployment of LED-based green energy lighting systems, the real-time power quality measurement of both various non-linear power signals including pulse waveform, spike waveform, etc and the undesired-signals including harmonics, sag, swell, etc is required. In this paper, we propose a low-cost power quality measurement (PQM) method for low- (60Hz-several KHz) to high-frequency (several tens KHz) power signals, which are generated by green-energy lighting systems, and implement a PQM testbed using TI TMS320F28335 MCU. The proposed algorithm is programmed using C in the CCS (Code Composer Studio) 3.3 environment and is verified using test signals generated by an arbitrary signal generator, NF-WF1974. In the implemented testbed, we can measure various non-linear current signals that LED SMPS generates, analyze harmonics by fast Fourier transform, and test sag, swell, and interruption using wavelet transform.

A study on the Measurement of Power system Frequency using Digital Signal Processor (디지털 신호처리기를 이용한 전력계통 주파수 측정에 관한 연구)

  • Lee, Jung-Woo;Oh, Yong-Taek
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.113-119
    • /
    • 2011
  • A frequency in electrical power system changes by the load fluctuation in utility grid, has an influence on a connected generator, and ultimately brings a big trouble in the power system. Therefore, a quick measurement of system frequency and governor control of power system is a very important factor in the reliability and the economic feasibility. Electromagnetic frequency relays in the past had the large power consumption and the difficulty of accurate measurement. After Researched and developed digital relays are very affected by the noise and the distortion, and the recently developed Microprocessor relays have problems of expensive device and time when measuring the frequency at 50[ms]. In this study, An improve algorithm that measures the power system frequency quickly and accurately is suggested, simulated by using Matlab and programmed using C code through DSP6713 KIT. This algorithm is tested to the arbitrary voltage waveform input. The results show that the suggested algorithm is effective in the accurate and quick frequency measurements.

Implementation of TFDR system with PXI type instruments for detection and estimation of the fault on the coaxial cable (동축 케이블의 결함 측정에 있어서 PXI 타입의 계측기를 이용한 개선된 TFDR 시스템의 구현)

  • Choe, Deok-Seon;Park, Jin-Bae;Yun, Tae-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.91-94
    • /
    • 2003
  • In this paper, we achieve implementation of a Time-Frequency Domain Reflectometry(TFDR) system through comparatively low performance(100MS/s) PCI extensions for Instrumentation(PXI). The TFDR is the general methodology of Time Domain Reflectometry(TDR) and Frequency Domain Reflectometry(FDR). This methodology is robust in Gaussian noises, because the fixed frequency bandwidth is used. Moreover, the methodology can get more information of the fault by using the normalized time-frequency cross correlation function. The Arbitrary Waveform Generator(AWG) module generates the input signal, and the digital oscilloscope module acquires the input and reflected signals, while PXI controller module performs the control of the total PXI modules and execution of the main algorithm. The maximum range of measurement and the blind spot are calculated according ta variations of time duration and frequency bandwidth. On the basis of above calculations, the algorithm and the design of input signals used in the TFDR system are verified by real experiments. The correlation function is added to the TDR methodology for reduction of the blind spot in the TFDR system.

  • PDF

Implementation of a Labview Based Time-Frequency Domain Reflectometry Real Time System for the Load Impedance Measurement (부하 임피던스 측정을 위한 랩뷰기반 시간-주파수 영역 반사파 실시간 시스템 구현)

  • Park, Tae-Geun;Kwak, Ki-Seok;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1803-1804
    • /
    • 2006
  • The purpose of this paper is to implement a Labview based TFDR Real Time system through the instruments of Pci eXtensions for Instrumentation(PXI). The proposed load impedance measurement algorithm was verified by experiments via the implemented real time system. The TFDR real time system consisted of the reference signal design, signal generation, signal acquisition, algorithm execution and results display parts. To implement real time system, all of the parts wore programmed by the Labview which is one of graphical programming languages. In the application software implemented by the Labview we were able to design a suitable reference signal according to the length and frequency attenuation characteristics of the target cable and controled the arbitrary waveform generator(ZT500PXI) of the signal generation part and the digital storage oscilloscope(ZT430PXI) of the signal acquisition part. By using the TFDR real time system with the terminal resistor on the target cable, we applied to the load impedance measurements. In the proposed load impedance algorithm a normalized time-frequency cross correlation function and a cross time-frequency distribution function was employed to calculate the reflection coefficient and phase difference between the input and the reflected signals.

  • PDF

Implementation of Advanced Frequency Measurement Algorithm (DSP를 이용한 개선된 주파수 측정 알고리즘 구현)

  • Lee, Jung-woo;An, Jong-hyun;Oh, Yong-taek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.465-468
    • /
    • 2009
  • A frequency in electrical power system changes by the load fluctuation in utility grid, has an influence on a connected generator, and ultimately brings a big trouble in the power system. Therefore, a quick measurement of system frequency and governor control of power system is a very important factor in the reliability and the economic feasibility. In this study, An improve algorithm that measures the power system frequency quickly and accurately is suggested, simulated by using Matlab and programmed using C code through DSP6713 KIT. This algorithm is tested to the arbitrary voltage waveform input. The results show that the suggested algorithm is effective in the accurate and quick frequency measurements.

  • PDF