• Title/Summary/Keyword: Antibacterial study

Search Result 1,695, Processing Time 0.032 seconds

Antimicrobial Properties of Knit made with PET and Ion Exchange Zeolite Nanocomposite Spun Yarn (PET와 이온교환 Zeolite 나노 복합 방적사로 제조한 니트의 항균성)

  • Jeon, Yongwook;Park, Youngmi
    • Textile Coloration and Finishing
    • /
    • v.33 no.1
    • /
    • pp.24-30
    • /
    • 2021
  • In this study, PET containing 3% silver ion-exchange zeolite was mixed with cotton in a ratio of 6:4 to prepare a spun yarn to evaluate the tensile strength, absorption speed, absorption rate, antibacterial property, and the efficiency of deodorization. As a result, the following conclusions were obtained. First, it can be confirmed that silver ion exchange zeolite is evenly distributed inside and on the surface of the antimicrobial PET-SF through SEM. It was found that the tensile strength between the CVC sample mixed with silver ion zeolite PET and cotton and the normal cotton 100% sample was slightly lower in the CVC sample. Although the absorption speed and water absorption rate were measured to find out the moisture characteristics, it was confirmed that there was no significant difference. The contact angle was slightly larger in the antimicrobial CVC sample, but the time it took for the moisture to completely penetrate into the knit fabric was 0.85 seconds. In addition, it was found that out of the total mixing ratio, 40% of antibacterial PET was spun with regular cotton to produce yarn, which had an excellent bacteria reduction rate of 99.9% and a deodorization efficiency of 85%.

Screening of Antimicrobial Activity and Proteolytic Enzyme Stability of Extract of the Blue Mussel Mytilus edulis (진주담치(Mytilus edulis) 추출물의 항균활성 및 단백질 분해효소에 대한 안정성 탐색)

  • Lee, Ji-Eun;Seo, Jung-Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.3
    • /
    • pp.280-286
    • /
    • 2021
  • This study was performed to screen the antimicrobial activities and proteolytic enzyme stability of the acidified extract of the Blue mussel Mytilus edulis. The acidified extract showed potent antimicrobial activities against Gram-positive bacteria, Bacillus subtilis, and Gram-negative bacteria, Escherichia coli D31, but had no activity against Candida albicans. Treatment of extract with trypsin completely abolished all or significant antibacterial activity against the tested bacteria, but slightly decreased antimicrobial activity against B. subtilis, and treatment of extract with chymotrypsin retained almost antibacterial activity against the tested bacteria except for E. coli D31. To confirm the additional enzyme stability of the extract, antimicrobial activity of the extract was tested after treated with several enzymes. Enzymes treated extract showed potent antimicrobial activity against B. subtilis and its activity was also retained for 5 h after trypsin treatments. Non-proteinaceous materials in the acidified extract also showed strong DNA-binding ability but did not show bacterial membrane permeabilizing ability. All our results indicate that mussel extract might contain the proteinaceous or non-proteinaceous antibacterial materials target not bacterial membrane but intracellular components. These results could be used to develop mussel extract as an additive for the improvement of stability or antimicrobial activity of antibiotics against specific bacteria.

A Genome-Wide Analysis of Antibiotic Producing Genes in Streptomyces globisporus SP6C4

  • Kim, Da-Ran;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.37 no.4
    • /
    • pp.389-395
    • /
    • 2021
  • Soil is the major source of plant-associated microbes. Several fungal and bacterial species live within plant tissues. Actinomycetes are well known for producing a variety of antibiotics, and they contribute to improving plant health. In our previous report, Streptomyces globisporus SP6C4 colonized plant tissues and was able to move to other tissues from the initially colonized ones. This strain has excellent antifungal and antibacterial activities and provides a suppressive effect upon various plant diseases. Here, we report the genome-wide analysis of antibiotic producing genes in S. globisporus SP6C4. A total of 15 secondary metabolite biosynthetic gene clusters were predicted using antiSMASH. We used the CRISPR/Cas9 mutagenesis system, and each biosynthetic gene was predicted via protein basic local alignment search tool (BLAST) and rapid annotation using subsystems technology (RAST) server. Three gene clusters were shown to exhibit antifungal or antibacterial activity, viz. cluster 16 (lasso peptide), cluster 17 (thiopeptide-lantipeptide), and cluster 20 (lantipeptide). The results of the current study showed that SP6C4 has a variety of antimicrobial activities, and this strain is beneficial in agriculture.

Isolation, Characterization, and Metabolic Profiling of Ceratorhiza hydrophila from the Aquatic Plant Myriophyllum spicatum

  • Elsaba, Yasmin M.;Boroujerdi, Arezue;Abdelsalam, Asmaa
    • Mycobiology
    • /
    • v.50 no.2
    • /
    • pp.110-120
    • /
    • 2022
  • The goal of the present study was to investigate the antibacterial properties, enzyme production, and metabolic profiling of a new Ceratorhiza hydrophila strain isolated from the submerged aquatic plant Myriophyllum spicatum. Furthermore, the fungus' morphological characterization and DNA sequencing have been described. The fungus has been identified and submitted to the GenBank as Ceratorhiza hydrophila isolate EG19 and the fungus ID is MK387081. The enzyme analyses showed its ability to produce protease and cellulase enzymes. According to the CSLI standard, the ethyl acetate extract of C. hydrophila showed intermediate antibacterial activity against Streptococcus pneumonia, Micrococcus luteus, and Staphylococcus aureus. Metabolic profiling has been carried out using 700 MHz NMR spectroscopy. Based on the 1H and 1H-13C heteronuclear single quantum coherence (HSQC) NMR data and NMR databases, 23 compounds have been identified. The identified metabolites include 31% amino acids, 9% sugars, 9% amines, 4% sugar alcohols, and 4% alkaloids. This is the first report for the metabolic characterization of C. hydrophila, which gave preliminary information about the fungus. It is expected that our findings not only will pave the way to other perspectives in enormous applications using C. hydrophila as a new promising source of antimicrobial agents and essential metabolites, but also it will be valuable in the classification and chemotaxonomy of the species.

Synthesis and Characterization of the Ag-doped TiO2

  • Lee, Eun Kyoung;Han, Sun Young
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the photo-deposition method was used to introduce Ag onto the surface of TiO2 to synthesize an Ag-TiO2 composite. The effects of the varying amounts of AgNO3 precursor and annealing time periods on the Ag content in the composites, as well as their antibacterial characteristics under visible light conditions were studied. SEM analysis revealed the spherical morphology of the Ag-TiO2 composite. Compared with TiO2, the Ag particles were too small to be observed. An XPS analysis of the Ag-TiO2 surface confirmed the Ag content and showed the peak intensities for elements such as Ag, Ti, O, C, and Si. The highest Ag content was observed when 33.3 wt.% of AgNO3 and an annealing time of 6 h were employed; this was the optimum annealing time for Ti-Ag-O bonding, in that the lowest number of O bonds and the highest number of Ag bonds were confirmed by XPS analysis. Superior antibacterial properties against Bacillus and Escherichia coli, in addition to the widest inhibition zones were exhibited by the Ag-TiO2 composite with an increased Ag content in a disk diffusion test, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%.

Bacterial Apoptosis-Like Death through Accumulation of Reactive Oxygen Species by Quercetin in Escherichia coli

  • Min Seok Kwun;Dong Gun Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.7
    • /
    • pp.1395-1400
    • /
    • 2024
  • The antimicrobial activity of the natural compounds from plant and food have well discovered since the interest on the beneficial effect of the natural compounds was risen. Quercetin, a flavonoid derived from vegetables, including onions, red leaf lettuces and cherries has been studied for diverse biological characteristics as anti-cancer and anti-microbial activities. The aim of current study is to investigate the specific antibacterial modes of action of quercetin against Escherichia coli. Quercetin decreased the E. coli cell viability and induced the severe damages (oxidative stress, DNA fragmentation) leading to cell death. Reactive oxygen species (ROS) generation was observed during the process, which we confirmed that oxidative stress was the key action of antibacterial activity of quercetin exerting its influence potently. Based on the results of Annexin V and Caspace FITC-VAD-FMK assay, the oxidative damage in E. coli has led to the bacterial apoptosis-like death in E. coli. To sum up, the contribution of ROS generation exerts crucial impact in antibacterial activity of quercetin.

Effects on the growth promotion of lactic acid bacteria, antimicrobial effect and antioxidant activity of natural materials

  • Woo Jin Ki;Gereltuya Renchinkhand;Tae-Hwan Kim;Myoung Soo Nam
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.3
    • /
    • pp.341-350
    • /
    • 2024
  • According to various negative effects of antibiotic growth promoters, the effects of nature-derived alternatives to antibiotic growth promoters are mainly investigated in livestock industry these days. The effects of nature-derived alternatives to antibiotic growth promoters are mainly investigated in livestock industry these days. This study was conducted to estimate the efficiency of natural-derived alternatives to antimicrobial and antioxidant such as oregano oil (OGO), sulfide type antimicrobial peptides derived from Bacillus or Yeast (SAPBY), antimicrobial peptides derived from yeast (APY). The lactic acid bacteria growth effects were found to be minimal. The antibacterial activity of SAPBY was minimal, but OGO and APY showed antibacterial activity against Escherichia coli and Salmonella Typhimurium, and APY also showed antibacterial activity against Staphylococcus. Antioxidant effects were observed in all SAPBY, OGO, and APY, and when comparing the radical scavenging rate at 10 mg·mL-1 for each sample, OGO showed the highest at 84.9%, followed by SAPBY at 48.7%. Therefore, the substances that can be used as natural antibiotics are SAPBY, APY, and OGO. It is believed that adding these substances to feed and feeding them to livestock will greatly contribute to improving the health of livestock and the productivity of safe livestock products. In further, research focused on various nature-derived alternatives to antibiotic growth promoter in livestock industry is needed.

Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

  • Venugopal, Adith;Muthuchamy, Nallal;Tejani, Harsh;Anantha-Iyengar-Gopalan, Anantha-Iyengar-Gopalan;Lee, Kwang-Pill;Lee, Heon-Jin;Kyung, Hee Moon
    • The korean journal of orthodontics
    • /
    • v.47 no.1
    • /
    • pp.3-10
    • /
    • 2017
  • Objective: Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods: AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results: SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions: Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial.

Reevaluation of bactericidal, cytotoxic, and macrophage-stimulating activities of commercially available Fucus vesiculosus fucoidan

  • Nishiguchi, Tomoki;Jiang, Zedong;Ueno, Mikinori;Takeshita, Satoshi;Cho, Kichul;Roh, Seong Woon;Kang, Kyong-Hwa;Yamaguchi, Kenichi;Kim, Daekyung;Oda, Tatsuya
    • ALGAE
    • /
    • v.29 no.3
    • /
    • pp.237-247
    • /
    • 2014
  • Polysaccharides prepared from marine algae sometimes contain contaminants such as polyphenols and endotoxins that may mislead their bona fide biological activities. In this study, we examined bioactive contaminants in commercially available fucoindan from Fucus vesiculosus, along with ascophyllan and fucoidan from Ascophyllum nodosum. F. vesiculosus fucoidan inhibited the growth of Vibrio alginolyticus in a concentration-dependent manner ($0-1,000{\mu}g\;mL^{-1}$). However, the antibacterial activity of the fucoidan significantly reduced after methanol-extraction, and the methanol-extract showed a potent antibacterial activity. The extract also showed cytotoxicity to RAW264.7 and U937 cells, and induced apoptotic nuclear morphological changes in U937 cells. These results suggest that the antibacterial activity of the fucoidan is partly due to the methanol-extractable contaminants that can also contribute to the cytotoxicity on RAW264.7 and U937 cells. On the other hand, the activities to induce secretion of nitric oxide and tumor necrosis factor-${\alpha}$ from RAW264.7 cells were observed in the fucoidan even after methanol extraction, and the extract had no such activities. Our observations suggest that commercially available fucoidan should be purified prior to biochemical use.

Growth Inhibition of Listeria monocytogenes and Escherichia coli O157:H7 in Naengmyon-Broth by addition of Antibacterial Dongchimi-Juice (항균성 동치미액의 첨가에 의한 냉면국물 중의 Listeria monocytogenes 및 Escherichia coli O157:H7 생육억제)

  • 박상희
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.2
    • /
    • pp.133-141
    • /
    • 1999
  • Juice of Dongchime a Korean traditional vegetable food fermented with lactic acid bacteria has been traditionary used as broth for Naengmyon a Korean cold noodles with broth. This study was carried out to demonstrate the growth inhibition of two food born pathogens Listeria monocytogenes and Escherichia coli O157:H7 in Naengmyon-broth containing Dongchimi-juice fermented with high antibacterial lactic acid bacteria Lactobacillus homohiochii B21 and Leuconostoc mesenteroides C16. Naengmyon-broth were made with beef broth and Dongchimi-juice fermented with lactic acid bacteria and the changes in viable cell counts of the inoculated pathogens in Naengmyon-broths were investigated during storage at 2$0^{\circ}C$ and 1$0^{\circ}C$. In Naengmyon-broth of 100% Dongchimi-juice stored at 2$0^{\circ}C$ the numbers of Listeria monocyto-genes and Escherichia coli O157:H7 were rapidly decreased from 106CFU/ml to 106CFU/ml in 8 hours and 40 hours respectively. In Naengmyon-broth containing 50% Dongchimi-juice their numbers were also rapidly decreased though the decreasing rates were not so fast as those in 1005 Dongchimi-juice. In Naengmyon-broth containing 10% Dongchimi-juice the growths of the two pathogens were markedly inhibited compared with those in 100% beef broth though some growths were occurred in early phase. But in Naengmyon-broth of 100% beef broth their growths were very fast from early. Antibacterial ac-tivity of the Dongchimi-juice was more distinct at 2$0^{\circ}C$ than at 1$0^{\circ}C$ and was more active against Listeria monocytogenes than against Escherichia coli 157:H7.

  • PDF