DOI QR코드

DOI QR Code

Incorporation of silver nanoparticles on the surface of orthodontic microimplants to achieve antimicrobial properties

  • Venugopal, Adith (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Muthuchamy, Nallal (Department of Chemistry Education, Kyungpook National University) ;
  • Tejani, Harsh (Department of Orthodontics, School of Dentistry, Kyungpook National University) ;
  • Anantha-Iyengar-Gopalan, Anantha-Iyengar-Gopalan (Research Institute of Advanced Energy Technology, Kyungpook National University) ;
  • Lee, Kwang-Pill (Department of Chemistry Education, Kyungpook National University) ;
  • Lee, Heon-Jin (Department of Oral Microbiology and Immunology, Kyungpook National University) ;
  • Kyung, Hee Moon (Department of Orthodontics, School of Dentistry, Kyungpook National University)
  • Received : 2016.02.25
  • Accepted : 2016.06.21
  • Published : 2017.01.25

Abstract

Objective: Microbial aggregation around dental implants can lead to loss/loosening of the implants. This study was aimed at surface treating titanium microimplants with silver nanoparticles (AgNPs) to achieve antibacterial properties. Methods: AgNP-modified titanium microimplants (Ti-nAg) were prepared using two methods. The first method involved coating the microimplants with regular AgNPs (Ti-AgNP) and the second involved coating them with a AgNP-coated biopolymer (Ti-BP-AgNP). The topologies, microstructures, and chemical compositions of the surfaces of the Ti-nAg were characterized by scanning electron microscopy (SEM) equipped with energy-dispersive spectrometer (EDS) and X-ray photoelectron spectroscopy (XPS). Disk diffusion tests using Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans were performed to test the antibacterial activity of the Ti-nAg microimplants. Results: SEM revealed that only a meager amount of AgNPs was sparsely deposited on the Ti-AgNP surface with the first method, while a layer of AgNP-coated biopolymer extended along the Ti-BP-AgNP surface in the second method. The diameters of the coated nanoparticles were in the range of 10 to 30 nm. EDS revealed 1.05 atomic % of Ag on the surface of the Ti-AgNP and an astounding 21.2 atomic % on the surface of the Ti-BP-AgNP. XPS confirmed the metallic state of silver on the Ti-BP-AgNP surface. After 24 hours of incubation, clear zones of inhibition were seen around the Ti-BP-AgNP microimplants in all three test bacterial culture plates, whereas no antibacterial effect was observed with the Ti-AgNP microimplants. Conclusions: Titanium microimplants modified with Ti-BP-AgNP exhibit excellent antibacterial properties, making them a promising implantable biomaterial.

Keywords

References

  1. Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dent Mater 2007;23:844-54. https://doi.org/10.1016/j.dental.2006.06.025
  2. Schierholz JM, Beuth J. Implant infections: a haven for opportunistic bacteria. J Hosp Infect 2001; 49:87-93. https://doi.org/10.1053/jhin.2001.1052
  3. Quirynen M, De Soete M, van Steenberghe D. Infectious risks for oral implants: a review of the literature. Clin Oral Implants Res 2002;13:1-19. https://doi.org/10.1034/j.1600-0501.2002.130101.x
  4. Zitzmann NU, Berglundh T, Ericsson I, Lindhe J. Spontaneous progression of experimentally induced periimplantitis. J Clin Periodontol 2004;31:845-9. https://doi.org/10.1111/j.1600-051X.2004.00567.x
  5. Ericsson I, Berglundh T, Marinello C, Liljenberg B, Lindhe J. Long-standing plaque and gingivitis at implants and teeth in the dog. Clin Oral Implants Res 1992;3:99-103. https://doi.org/10.1034/j.1600-0501.1992.030301.x
  6. Lindhe J, Meyle J. Peri-implant diseases: Consensus Report of the Sixth European Workshop on Periodontology. J Clin Periodontol 2008;35(8 Suppl): 282-5. https://doi.org/10.1111/j.1600-051X.2008.01283.x
  7. Zitzmann NU, Berglundh T. Definition and prevalence of peri-implant diseases. J Clin Periodontol 2008;35(8 Suppl):286-91. https://doi.org/10.1111/j.1600-051X.2008.01274.x
  8. Wadstrom T. Molecular aspects of bacterial adhesion, colonization, and development of infections associated with biomaterials. J Invest Surg 1989;2:353-60. https://doi.org/10.3109/08941938909018261
  9. Liao J, Anchun M, Zhu Z, Quan Y. Antibacterial titanium plate deposited by silver nanoparticles exhibits cell compatibility. Int J Nanomedicine 2010;5:337-42.
  10. Meredith DO, Eschbach L, Riehle MO, Curtis AS, Richards RG. Microtopography of metal surfaces influence fibroblast growth by modifying cell shape, cytoskeleton, and adhesion. J Orthop Res 2007;25:1523-33. https://doi.org/10.1002/jor.20430
  11. Chang YY, Huang HL, Lai CH, Hsu JT, Shieh TM, Wu AY, et al. Analyses of antibacterial activity and cell compatibility of titanium coated with a Zr-C-N film. PLoS One 2013;8:e56771. https://doi.org/10.1371/journal.pone.0056771
  12. Oh EJ, Nguyen TDT, Lee SY, Jeon YM, Bae TS, Kim JG. Enhanced compatibility and initial stability of Ti6Al4V alloy orthodontic miniscrews subjected to anodization, cyclic precalcification, and heat treatment. Korean J Orthod 2014;44:246-53. https://doi.org/10.4041/kjod.2014.44.5.246
  13. Cho YC, Cha JY, Hwang CJ, Park YC, Jung HS, Yu HS. Biologic stability of plasma ion-implanted miniscrews. Korean J Orthod 2013;43:120-6. https://doi.org/10.4041/kjod.2013.43.3.120
  14. Crede CSF. Die verhutung der augenentzundung der neugeborenen (Ophthalmoblennorrhoea neonatorum) der haufigsten und wuchtigsten ursache der blindheit. Berlin: A. Hirschwald; 1884.
  15. Buckley JJ, Lee AF, Olivic L, Wilsonb K. Hydroxyapatite supported antibacterial Ag3PO4 nanoparticles. J Mater Chem 2010;20:8056-63. https://doi.org/10.1039/c0jm01500h
  16. Ciobanu CS, Massuyeau F, Constantin LV, Predoi D. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at $100^{\circ}C$. Nanoscale Res Lett 2011;6:613. https://doi.org/10.1186/1556-276X-6-613
  17. Hotta M, Nakajima H, Yamamoto K, Aono M. Antibacterial temporary filling materials: the effect of adding various ratios of Ag-Zn-Zeolite. J Oral Rehabil 1998;25:485-9. https://doi.org/10.1046/j.1365-2842.1998.00265.x
  18. Kvitek L, Panacek A, Soukupova J, Kolar M, Vecerova R, Prucek R, et al. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 2008; 112:5825-34. https://doi.org/10.1021/jp711616v
  19. Rusu VM, Ng CH, Wilke M, Tiersch B, Fratzl P, Peter MG. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 2005;26:5414-26. https://doi.org/10.1016/j.biomaterials.2005.01.051
  20. Lim SI, Zhong CJ. Molecularly mediated processing and assembly of nanoparticles: exploring the interparticle interactions and structures. Acc Chem Res 2009;42:798-808. https://doi.org/10.1021/ar8002688
  21. Zheng J, Yu H, Li X, Zhang S. Enhanced photocatalytic activity of TiO2 nano-structured thin film with a silver hierarchical configuration. Appl Surf Sci 2008;254:1630-35. https://doi.org/10.1016/j.apsusc.2007.07.165
  22. Diaz M, Barba F, Miranda M, Guitian F, Torrecillas R, Moya JS. Synthesis and antimicrobial activity of a silver-hydroxyapatite nanocomposite. J Nanomater 2009;ID498505.
  23. Moulder JF, Stickle WF, Sobol PE, Bomben KD. Handbook of X-ray photoelectron spectroscopy. Eden Prairie, MN: Perkin-Elmer Corp. 1992.
  24. McQuillan JS, Infante HG, Stokes E, Shaw AM. Silver nanoparticle enhanced silver ion stress response in Escherichia coli K12. Nanotoxicology 2012;6:857-66. https://doi.org/10.3109/17435390.2011.626532
  25. Suresh AK, Pelletier DA, Wang W, Moon JW, Gu B, Mortensen NP, et al. Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gramnegative and gram-positive bacteria. Environ Sci Technol 2010;44:5210-5. https://doi.org/10.1021/es903684r
  26. Xu H, Qu F, Xu H, Lai W, Andrew Wang Y, Aguilar ZP, et al. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7. Biometals 2012;25:45-53. https://doi.org/10.1007/s10534-011-9482-x
  27. Taheri S, Vasilev K, Majewski P. Silver nanoparticles: synthesis, antimicrobial coatings, and applications for medical devices. Recent Pat Mater Sci 2015;8:166-75. https://doi.org/10.2174/1874464808666150331222126
  28. Ritz HL. Microbial population shifts in developing human dental plaque. Arch Oral Biol 1967;12:1561-8. https://doi.org/10.1016/0003-9969(67)90190-2
  29. Sambhy V, MacBride MM, Peterson BR, Sen A. Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 2006;128:9798-808. https://doi.org/10.1021/ja061442z
  30. Shi Z, Neoh KG, Kang ET. Surface-grafted viologen for precipitation of silver nanoparticles and their combined bactericidal activities. Langmuir 2004;20:6847-52. https://doi.org/10.1021/la049132m
  31. Yuan W, Fu J, Su K, Ji J. Self-assembled chitosan/heparin multilayer film as a novel template for in situ synthesis of silver nanoparticles. Colloids Surf B Biointerfaces 2010;76:549-55. https://doi.org/10.1016/j.colsurfb.2009.12.017
  32. Lischer S, Korner E, Balazs DJ, Shen D, Wick P, Grieder K, et al. Antibacterial burst-release from minimal Ag-containing plasma polymer coatings. J R Soc Interface 2011;8:1019-30. https://doi.org/10.1098/rsif.2010.0596
  33. Ho CH, Tobis J, Sprich C, Thomann R, Tiller JC. Nanoseparated polymeric networks with multiple antimicrobial properties. Adv Mater 2004;16:957-61. https://doi.org/10.1002/adma.200306253

Cited by

  1. Antiadherence and Antimicrobial Properties of Silver Nanoparticles against Streptococcus mutans on Brackets and Wires Used for Orthodontic Treatments vol.2018, pp.None, 2017, https://doi.org/10.1155/2018/9248527
  2. PdO/ZnO@mSiO2 Hybrid Nanocatalyst for Reduction of Nitroarenes vol.8, pp.7, 2017, https://doi.org/10.3390/catal8070280
  3. Synthesis of silver nanostructures in ionic liquid media and their application to photodegradation of methyl orange vol.9, pp.None, 2017, https://doi.org/10.1177/1847980419836500
  4. Application of Antimicrobial Nanoparticles in Dentistry vol.24, pp.6, 2017, https://doi.org/10.3390/molecules24061033
  5. Improved Immunoregulation of Ultra-Low-Dose Silver Nanoparticle-Loaded TiO 2 Nanotubes via M2 Macrophage Polarization by Regulating GLUT1 and Autophagy vol.15, pp.None, 2020, https://doi.org/10.2147/ijn.s242919
  6. Nanomaterials in the modern dentistry (review) vol.100, pp.2, 2017, https://doi.org/10.17116/stomat2021100021103
  7. Nanomaterials Application in Orthodontics vol.11, pp.2, 2017, https://doi.org/10.3390/nano11020337
  8. Applications of Silver Nanoparticles in Dentistry: Advances and Technological Innovation vol.22, pp.5, 2017, https://doi.org/10.3390/ijms22052485
  9. Nanoparticles in Dentistry: A Comprehensive Review vol.14, pp.8, 2017, https://doi.org/10.3390/ph14080752
  10. Biosafety of Nanoparticles Used in Orthodontics - A Literature Review vol.10, pp.32, 2017, https://doi.org/10.14260/jemds/2021/543
  11. A Brief Review on Micro-Implants and Their Use in Orthodontics and Dentofacial Orthopaedics vol.11, pp.22, 2017, https://doi.org/10.3390/app112210719